A new principal rank characteristic sequence

The principal minors of certain matrices are of interest in several areas of mathematics; as a result, researchers associated two sequences with an $n \times n$ symmetric, complex Hermitian, or skew-Hermitian matrix B. The first of these is the principal rank characteristic sequence (pr-sequence); this sequence is defined as $\left.r_{0}\right] r_{1} \cdots r_{n}$, where, for $k \geq 1, r_{k}=1$ if B has a nonzero order- k principal minor, and $r_{k}=0$, otherwise; $r_{0}=1$ if and only if B has a 0 diagonal entry. The second sequence, one that "enhances" (or refines) the pr-sequence, is the enhanced principal rank characteristic sequence (epr-sequence), denoted by $\ell_{1} \ell_{2} \cdots \ell_{n}$, where ℓ_{k} is either A, S , or N , based on whether all, some but not all, or none of the order- k principal minors of B are nonzero.

In this talk, known results about pr- and epr-sequences will be discussed, concluding with the introduction of a new principal rank characteristic sequence for Hermitian matrices, which was recently defined by the present speaker. Several results about this new sequence are presented.

