WEAK LOG MAJORIZATION AND DETERMINANTAL INEQUALITIES

PINGPING ZHANG

Abstract. Denote by \mathbb{P}_{n} the set of $n \times n$ positive definite matrices. Let $D=D_{1} \oplus \cdots \oplus D_{k}$, where $D_{1} \in \mathbb{P}_{n_{1}}, \ldots, D_{k} \in \mathbb{P}_{n_{k}}$ with $n_{1}+\cdots+n_{k}=n$. Partition $C \in \mathbb{P}_{n}$ according to $\left(n_{1}, \ldots, n_{k}\right)$ so that $\operatorname{Diag} C=C_{1} \oplus \cdots \oplus C_{k}$. We prove the following weak log majorization result:

$$
\lambda\left(C_{1}^{-1} D_{1} \oplus \cdots \oplus C_{k}^{-1} D_{k}\right) \prec_{w} \log \lambda\left(C^{-1} D\right),
$$

where $\lambda(A)$ denotes the vector of eigenvalues of $A \in \mathbb{C}_{n \times n}$. The inequality does not hold if one replaces the vectors of eigenvalues by the vectors of singular values, i.e.,

$$
s\left(C_{1}^{-1} D_{1} \oplus \cdots \oplus C_{k}^{-1} D_{k}\right) \prec_{w \log } s\left(C^{-1} D\right)
$$

is not true. As an application, we provide a generalization of a determinantal inequality of Matic [2, Theorem 1.1]. In addition, we obtain a weak majorization result which is complementary to a determinantal inequality of Choi [1, Theorem 2] and give a weak log majorization open question.

REfERENCES

[1] D. Choi, Determinantal inequalities of positive definite matrices, Math. Inequal. Appl. 19 (2016), 167172.
[2] I. Matic, Inequalities with determinants of perturbed positive matrices, Linear Algebra Appl. 449 (2014), 166-174.

