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Preliminary examination in Partial Differential Equations

Student name:

Instructions

1. Work Problems 1 through 3 and at least one of Problems 4 through 6.

2. No books or notes are allowed.

3. In all problems, you can apply the conclusions from the previous parts to all parts that appear
later in the same problem.

Notations and Assumption

• Rn : n-dimensional Euclidean space, n ≥ 2, with points x = (x1, . . . , xn), xi ∈ R.

• U : proper open subset of Rn; U is a domain if it is also connected.

• ∂U : boundary of U ; Ū = U ∪ ∂U : closure of U .

• Diu =
∂u

∂xi
: partial derivative of u with respect to xi , Diju =

∂2u

∂xi∂xj
, etc.

• Du : gradient of u.

• ū : average of function u over set U , i.e., ū =
1
|U |

ˆ
U
u , where |U | is the measure of U .

• In expressions aij(x)Diju or bi(x)Diu, etc., the summation over indices i, j = 1, . . . , n is
understood.

• The coefficient matrix aij that appears in the elliptic and parabolic operators is assumed to
be uniformly positive definite, i.e., there exists θ > 0 such that aij(·)ξiξj ≥ θ|ξ|2 for all ξ ∈ Rn

and throughout the domain of definition of aij .

Problems

1. (30 points) Assume U is a bounded domain with boundary of class C1.

(a) Fix 1 ≤ p ≤ ∞ and let k be a nonnegative integer. Define the Sobolev spaces W k,p(U),
W k,p

0 (U), and the corresponding norms.

(b) Suppose u ∈ W 1,p(U) satisfies Du = 0 a.e. in U . Use smooth approximations to prove
that u is constant a.e. in U .

(c) State the embedding theorems for the space W 1,p(U) for the cases 1 ≤ p < n and n < p <
∞. Specify the value of the Sobolev exponent in the Sobolev inequality and the value of
the Hölder exponent in Morrey’s inequality.

(d) Specify the conditions on p and q under which the embedding W 1,p(U) ↪→ Lq(U) is
compact.
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(e) Assume ∂U is of class C1 and let 1 ≤ p < n. Prove that the following Poincaré inequality

‖u− ū‖Lp(U) ≤ C‖Du‖Lp(U)

holds for some constant C that depends only on n, p, and U , and for all u ∈ W 1,p(U).
Conclude that, in particular, the norms ‖Du‖Lp(U) and ‖u‖W 1,p(U) are equivalent on V =
{u ∈W 1,p(U) : ū = 0}.
Hint: Assume that there exists a sequence uk ∈W 1,p(U) such that

‖uk − ūk‖Lp(U) > k‖Duk‖Lp(U).

Use compactness to show that the sequence vk =
uk − ūk

‖uk − ūk‖Lp(U)
converges in both Lp(U)

and W 1,p(U). Identify the limits and arrive at a contradiction.

(f) Generalize the conclusion in part (e) slightly by showing that, for 1 ≤ p < n, there exists
a constant C depending only on n, p, and U such that the following Sobolev-Poincaré
inequality holds

‖u− ū‖Lnp/(n−p)(U) ≤ C‖Du‖Lp(U)

for all u ∈W 1,p(U). Hint: Apply the Sobolev inequality first.

2. (20 points) Suppose U is a bounded domain. Let L be an elliptic operator in non-divergence
form with no zero-order term, i.e.,

Lu = −aij(x)Diju+ bi(x)Diu.

Assume that the coefficients aij and bi are continuous in U , and aij = aji for i, j = 1, . . . , n.

(a) Give the definition of the interior ball condition on domain U .

(b) State Hopf’s lemma and the strong maximum principle.

(c) Let u be a smooth solution of Lu = 0 in U . For v = |Du|2 + λu2, show that Lv ≤ 0 in U
when λ is large enough. Deduce

‖Du‖L∞(U) ≤ C(‖Du‖L∞(∂U) + ‖u‖L∞(∂U))

for some constant C independent of u.

3. (30 points) Let T > 0 and define UT = U×(0, T ]. Assume aij , bi, c ∈ L∞(UT ) for i, j = 1, . . . , n;
f ∈ L2(UT ); and g ∈ L2(U). Suppose that aij = aji for i, j = 1, . . . , n. For each time 0 < t < T ,
define the operator L as

Lu = −Dj(aij(x, t)Diu) + bi(x, t)Diu+ c(x, t)u .

(a) Define what it means for u to be a weak solution of the following parabolic problem:
ut + Lu = f in UT

u = 0 on ∂U × [0, T ]
u = g on U × {t = 0} .

(∗)

Specify the spaces for all functions appearing in your definition.
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(b) Outline in general terms without going into much detail the Galerkin method for estab-
lishing the existence of a weak solution of problem (∗).

(c) State Gronwall’s inequality.

(d) Show that a weak solution of (∗) is unique.

4. (20 points) Suppose u is a complex-valued function in Rn such that u ∈ L1(Rn).

(a) Define the Fourier transform of u and the inverse Fourier transform of u.

(b) In general, u ∈ L2(Rn) does not imply that u ∈ L1(Rn). However, the Fourier transform
of u is still defined as an element in L2(Rn). Explain in what sense the Fourier transform
of u is defined in this case and discuss other conclusions of Plancherel’s theorem.

(c) Suppose g ∈ L2(Rn). Derive an explicit formula for the solution of the following initial-
value problem {

ut −∆u+ u = 0 in Rn × (0,∞)
u = g on Rn × {t = 0}.

Hint: Apply the Fourier transform with respect to the space variable, solve the resulting
ordinary differential equation, and apply the inverse transformation. Your representation
will be in the form of convolution.

5. (20 points) Suppose U is a bounded domain. Let L be a second order elliptic partial differential
operator in divergence form, i.e.,

Lu = −Dj(aij(x)Diu) + bi(x)Diu+ c(x)u .

Assume aij , bi, c ∈ L∞(U) and let f ∈ L2(U).

(a) Define what it means for u to be a weak solution of the boundary-value problem{
Lu = f in U

u = 0 on ∂U.
(†)

(b) State the energy estimates for the bilinear form corresponding to the operator L.

(c) Give the statement of the Lax-Milgram theorem.

(d) Suppose bi = 0, i = 1, . . . , n. Prove that there exists a constant µ > 0 such that, for
each f ∈ L2(U), the boundary-value problem (†) has a unique weak solution u ∈ H1

0 (U)
provided c(x) ≥ −µ for x ∈ U .

6. (20 points) Let aij ∈ L∞(U) and define Lu = −Dj(aijDiu).

(a) State the John-Nirenberg inequality.

(b) Let u ∈W 1,n(U) and assume U is convex and bounded. Use the John-Nirenberg inequality
to show that there exist positive constants σ0 and C depending only on n such that

ˆ
U

exp
{
σ|u− uU |
‖Du‖Ln(U)

}
dx ≤ Cdn,

where σ = σ0|U |d−n and d = diam(U).
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(c) State Harnack’s inequality for the solutions of Lu = 0. Sketch the Moser iteration method
for establishing this result in general terms without giving complete details. Point out the
step at which the John-Nirenberg inequality is applied.

(d) Let Br denote the ball of radius r centered at the origin. Suppose u is a weak solution of
Lu = 0 in U = B1. For 0 < r < 1, let Mr = sup

Br

u, mr = inf
Br

u, and define the oscillation

of u in Br as follows
ω(r) = Mr −mr.

Use the weak Harnack inequality to show that there exist positive constants α and C such
that,

ω(ρ) ≤ C
(ρ
r

)α
ω(r),

for 0 < ρ < r < 1.
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