1997 ALGEBRA PRELIMINARY EXAMINATION

I. GROUP THEORY

In this section of the exam, work one of the first two problems and any three of the remaining five.

- 1. State the Fundamental Theorem for Finitely Generated Abelian Groups, and give an outline of its proof.
- 2. State the Sylow Theorems, and prove the First Sylow Theorem.
- 3. Show that, up to isomorphism, there are exactly two groups of order 10.
- 4. Let G be a group and suppose N is a normal subgroup of G such that $G/N \cong \mathbb{Z}$, the infinite cyclic group. Show that there is a subgroup U of G such that $U \cap N = \{e\}$ and G = NU.
- 5. Let \mathbf{Z}_m and \mathbf{Z}_n be cyclic groups of orders m and n, respectively. Show that $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic if and only if (m, n) = 1.
- 6. Show that no group of order 56 is simple.
- 7. Show that a group cannot be the union of two proper subgroups.

II. RING THEORY

Work any four of the following five problems. Throughout this section, R is a commutative ring with identity $1 \neq 0$.

- 1. Let d be a square-free integer and let $R = \mathbb{Z}[\sqrt{d}]$. Argue that for any nonzero ideal I of R, R/I is finite. Conclude that R is a noetherian integral domain of Krull dimension 1.
- 2. Let R be a noetherian integral domain. Show that every nonzero nonunit of R can be factored into a product of irreducible elements.
- 3. Let R be a Dedekind domain and let I be a nonzero ideal of R. Show that I is primary if and only if $I = P^m$ for some maximal ideal P of R and positive integer m.
- 4. Let P_1 and P_2 be distinct maximal ideals of R.
 - (a) Show that $P_1^m + P_2^n = R$ for all positive integers m and n.
 - (b) Suppose R is noetherian and let I_1 and I_2 be ideals of R such that I_j is P_j -primary. Show that $I_1 + I_2 = R$.

- 5. Let R be a noetherian local ring with maximal ideal P and let I be a nonzero ideal of R. Use Nakayama's Lemma to prove the following two statements.
 (a) PI ≠ I
 - (a) $PI \neq I$. (b) If I is invertible, any $r \in I \setminus PI$ generates I. (Consider $rI^{-1} + P$.)