ALGEBRA PRELIMINARY EXAM May 9, 1998

I. GROUP THEORY

Do problem 1 and any four of problems 2 through 6.

- 1. Prove the First Sylow Theorem: If G is a finite group of order $p^n m$, where n is a positive integer and p is a prime not dividing m, then G has a subgroup of order p^n .
- 2. Construct a list of abelian groups of order 1998 such that every abelian group of order 1998 is isomorphic to exactly one group on the list.
- 3. Show that, up to isomorphism, there is only one group of order 33.
- 4. Suppose G is a group of order p^n for some prime p and positive integer n.
 - a. Show that G has a nontrivial center.
 - b. Prove that if $|G| = p^2$, then G is abelian.
 - c. Give an example of a prime p and a group G of order p^3 that is *not* abelian.
- 5. Prove or give a counterexample: Every solvable group is nilpotent.
- 6. Suppose $n \ge 5$ and G is a simple group of order n!/2. Prove that $G \cong A_n$ if and only if G has a subgroup of index n.

II. RING THEORY

Do problem 7 and any four of problems 8 through 12.

- 7. Prove that every Euclidean Integral Domain (EID) is a Principal Ideal Domain (PID).
- 8. Let R be a commutative ring with identity and let S be a multiplicative subset of R.
 - a. Give a careful definition of $S^{-1}R$, the ring of quotients of R by S, and show that its addition is well-defined.
 - b. Let $R = \mathbb{Z}$ and $S = \{n \in \mathbb{Z} \mid 5 \nmid n\}$. Prove or disprove: There exist ring epimorphisms $\varphi : S^{-1}R \to F_1$ and $\psi : S^{-1}R \to F_2$, with F_1 and F_2 nonisomorphic fields.
- 9. Let R be a ring with identity and let X be a nonempty set. Prove that there exists an object free on X (relative to the forgetful functor, as usual) in the category of unitary left R-modules.
- 10. Let R be a ring and let $0 \to A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \to 0$ be an exact sequence of left R-modules. Prove that there exists an R-homomorphism $h: A_2 \to B$ such that $gh = 1_{A_2}$ if and only if the given sequence is isomorphic to $0 \to A_1 \xrightarrow{\iota_1} A_1 \oplus A_2 \xrightarrow{\pi_2} A_2 \to 0$, where $\iota_1(a_1) = (a_1, 0)$ and $\pi_2((a_1, a_2)) = a_2$ $(a_i \in A_i)$.
- 11. Let R be a PID. Prove that a left R-module A is injective if and only if it is divisible (meaning, for each $a \in A$ and $0 \neq r \in R$, there exists $b \in A$ such that rb = a).
- 12. Let R be a ring. Let A, A' be right R-modules, let B, B' be left R-modules, and let $f: A \to A', g: B \to B'$ be R-homomorphisms.
 - a. Prove that there exists a unique group homomorphism $f \otimes g : A \otimes_R B \to A' \otimes_R B'$ satisfying $(f \otimes g)(a \otimes b) = f(a) \otimes g(b)$ for all $a \in A, b \in B$.
 - b. Prove or give a counterexample: If f is injective, then so is $f \otimes 1_B : A \otimes_R B \to A' \otimes_R B$.