ALGEBRA PRELIM

JUNE 5, 1999

1. Group Theory

Select any three numbered problems from this section to work.

1. Let G be a finite group.
(a) Show if G is Abelian, then for each positive integer m dividing $|G|$, there exists a subgroup of G of order m. (Hint: use the Fundamental Theorem)
(b) Provide a counter-example to (a) if G is not assumed to be Abelian.
2. Let G be a finite group, and recall that G acts on itself by conjugation.
(a) Given $x \in G$, show that the number of elements in the conjugacy class of x is $\left[G: C_{G}(x)\right]$, where $C_{G}(x)$ is the centralizer of x in G.
(b) If $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}$ are the distinct conjugacy classes of G, derive the formula

$$
|G|=\sum_{j=1}^{n}\left[G: C_{G}\left(x_{j}\right)\right] .
$$

3. State the three Sylow Theorems and use them to show that every group of order 21 is not simple.
4. State Cauchy's Theorem and use it to show: For a fixed prime p and a finite group G, every element of G has order p^{k} for some $k \geq 0$ if and only if $|G|=p^{m}$ for some $m \geq 0$.

2. Ring Theory

Select any four numbered problems from this section to work.

1. Prove that any finitely generated module over a principal ideal domain is a direct sum of cyclic modules.
2. Prove that a torsion-free module over an integral domain is divisible if and only if it is injective.
3. Prove Hilbert's Basis Theorem: If R is a commutative Noetherian ring, then so is the polynomial ring $R[x]$.
4. Using the definition that a Dedekind domain is an integral domain in which every nonzero ideal is invertible, show that in a Dedekind domain R, every proper ideal is a product of (one or more) prime ideals.

5 . Let R be a ring with 1 .
(a) Define the Jacobson radical of R, hereafter denoted by $J(R)$.
(b) Prove Nakayama's Lemma: If M is a finitely generated module such that $J(R) M=M$, then $M=0$.

