ALGEBRA PRELIMINARY EXAM

Attempt at least **3** problems from each section!

1. Group Theory

- 1. State the three Sylow Theorems and give an outline of their proofs.
- 2. State and prove the Frattini Argument.
- 3. Let G be a finite group, and suppose that p is the smallest prime dividing |G|. Show that every subgroup U of G with |G:U| = p is normal in G.
- 4. Let p and q be primes. Show that every group G with |G| = pq is solvable.
- 5. Show that a finite group G is nilpotent if and only if $|Syl_p(G)| = 1$ for all primes p.

2. Rings and Modules

- 1. Let R be a principal ideal domain. Show that a submodule of a free module is free.
- 2. Show that every integral domain R has a field of quotients Q(R) which is unique up to isomorphism.
- 3. State the structure theorem of finitely generated unitary modules over a PID.
- 4. Give an example for each of the following cases. Explain why your examples work.
 - a) A UFD that is not a Noetherian domain.
 - b) A Noetherian domain that is not a UFD.
- 5. Let R be a ring. Suppose that

is a commutative diagram of R-module homomorphisms such that each row is exact. Show

- a) If α and γ are monomorphisms, then β is a monomorphism.
- b) If α and γ are epimorphisms, then β is an epimorphism.
- c) If α and γ are isomorphisms, then β is an isomorphism.

ALGEBRA PRELIMINARY EXAM

3. FIELDS AND GALOIS THEORY

- 1. Let F be an extension field of a field K, and $u \in F$ algebraic over K. Show that the rings $K(u) = K[u] \simeq K[x]/(p(x))$, where p(x) is the irreducible polynomial of u over K.
- 2. Suppose the fields K, E, F satisfy that $K \subset E \subset F$, and F is a finite dimensional extension over K. Prove that [F:K] = [F:E][E:K].
- 3. Determine the Galois groups of the following polynomials over \mathbb{Q} :
 - a) $f(x) = (x^2 + 1)(x^2 + 2)$ b) $f(x) = x^3 3x + 1$ c) $f(x) = x^{2008} 1$
- 4. Let F be a finite field with 3^{12} elements; and view F as an extension field of \mathbb{Z}_3 .
 - a) Determine the Galois group of F over \mathbb{Z}_3 .
 - b) Draw the intermediate field diagram between F and \mathbb{Z}_3 , and the subgroup diagram of $\operatorname{Aut}_{\mathbb{Z}_3} F$.
- 5. Let $K \subset F \subset \overline{K}$ be fields such that \overline{K} is an algebraic closure of K, and F is a finite dimensional extension field of K. Let $\{F: K\}$ denote the number of distinct K-isomorphisms from F to certain extension field of K in \overline{K} . Prove that $|\operatorname{Aut}_K F| \leq \{F: K\} \leq [F: K]$.