Algebra Preliminary Exam 2012

May 12, 2012

1 Group Theory

Instruction: Do problems 1 and 2 and any three of the remaining five.

- 1. State and prove the Second Isomorphism Theorem (also known as the Diamond Theorem).
- 2. State and prove the First Sylow Theorem (also known as the Sylow Existence Theorem).
- 3. (a) Prove that a subgroup of a cyclic group is cyclic.
 - (b) Prove or disprove: The group \mathbf{Q} of rational numbers under addition is cyclic.
 - (c) Let G be a group. Prove that if G/Z(G) is cyclic, then G is abelian. (Z(G) denotes the center of G.)
- 4. (a) Let *m* and *n* be positive integers. Prove that if gcd(m, n) = 1, then $\mathbf{Z}_m \oplus \mathbf{Z}_n \cong \mathbf{Z}_{mn}$. (\mathbf{Z}_n denotes the group of integers modulo *n*.)
 - (b) Give a list of groups having the property that every abelian group of order 120 is isomorphic to precisely one of the groups in the list.
 - (c) To which group in your list is the group $\mathbf{Z}_2 \oplus \mathbf{Z}_{10} \oplus \mathbf{Z}_6$ isomorphic?
- 5. (a) Let **C** be a category. Define **coproduct** of the family $\{A_i\}_{i \in I}$ of objects of **C**.
 - (b) Discuss uniqueness of coproducts and prove your claims.
 - (c) Prove that in the category of abelian groups every family of objects has a coproduct.
- 6. (a) Define **nilpotent group** (and include the definitions of any nonelementary terms you use).
 - (b) Prove that a finite p-group is nilpotent (p, prime).
 - (c) Let D_4 be the dihedral group of order 8 and let S_3 be the symmetric group on three elements. Prove or disprove: $D_4 \times S_3$ is nilpotent.
- 7. (a) Let G be a group and let N be a normal subgroup of G. Prove that if N is a maximal normal subgroup of G, then G/N is simple.
 - (b) Give an example of two nonisomorphic groups having the same composition factors, with one of these composition factors having order 60. Prove that the groups are not isomorphic.
 - (c) Prove that there does not exist a simple group of order 280.

2 Rings, Modules, and Galois Theory

Instruction: Do problems 8 and 9 and any three of the remaining five.

- 8. State the structure theorem of finitely generated modules over a principal ideal domain. You need not prove the theorem.
- 9. Draw the intermediate field diagram between $\mathbb{Q}(\sqrt{-1},\sqrt{2})$ and \mathbb{Q} , and the corresponding subgroup diagram of the Galois group $\operatorname{Aut}_{\mathbb{Q}}\mathbb{Q}(\sqrt{-1},\sqrt{2})$.
- 10. Compute the Galois group of $x^3 3x + 3 \in K[x]$ over the following fields K (Hint: $x^3 3x + 3$ may or may not be irreducible in different K[x]):
 - (a) $K = \mathbb{Q}$
 - (b) $K = \mathbb{Z}_2$
 - (c) $K = \mathbb{Z}_5$
 - (d) $K = \mathbb{Z}_7$
- 11. (a) Let R be a commutative ring with identity. Let $f : R \to S$ be a ring epimorphism. Prove that S is an integral domain if and only if ker f is a prime ideal of R.
 - (b) Prove that any homomorphic image of a Noetherian ring is a Noetherian ring.
- 12. Prove that if F is an extension field of K and $u \in F$ is algebraic over K, then K(u) = K[u].
- 13. Prove that an integral domain R is a unique factorization domain if and only if every nonzero prime ideal in R contains a nonzero principal ideal that is prime.
- 14. Let R be an integral domain. Let A be a unitary torsion R-module. In other words, for every $a \in A$, $1_R \cdot a = a$ and there is a nonzero element $r_a \in R \setminus \{0\}$ such that $r_a \cdot a = 0$. Prove that A is not a projective R-module.