TENTATIVE LIST OF 620-22 TOPICS (AND SOME 520-21-22 TOPICS) TO BE REVIEWED FOR 1994 WRITTEN GENERAL EXAM IN ANALYSIS:

PRIMARY TOPICS FOR WHICH YOU SHOULD KNOW DEFINITIONS, STATEMENTS OF THEOREMS, EASIER SELF-CONTAINED PROOFS, AND EXAMPLES:

- 1. Continuity and differentiability of real functions. Sets of continuity. Continuous nowhere differentiable functions.
- 2. Monotone functions and functions of bounded variation.
- 3. Cardinality, countable sets, uncountable sets, sets of cardinality c, Bernstein's Theorem (not the proof).
- 4. Riemann integral, characterization (bounded, discountinuity set of measure zero) of Riemann integrability of a function on an interval.
- 5. Sigma-algebras, mininal sigma-algebra containing a given collection of sets, the Borel sets. Finite countably additive non-negative measure μ on a sigma-algebra.
- 6. Lebesgue outer measure λ^0 and Lebesgue measure λ on an interval and on the reals. Non-measureable sets (Vitali and Bernstein). Approximation to the measure of a set M with a closed set inside M and an open set containing M.
- 7. Perfect sets and Cantor sets (of measure zero and of positive measure).
- 8. Nowhere dense sets, first and second category sets, residual sets, the Baire Category Theorem, first category sets of full measure.
- 9. Measurable functions, basic theorems (f+g measurable etc.), Lusin's Theorem.
- 10. Sequences of measureable functions. Uniform, pointwise, almost everywhere, and L^{p} -convergence (primarily L^{1} -, L^{2} -, and L^{∞} -convergence). Convergence in measure. Egoroff's Theorem.
- 11. Legesgue integral (with respect to Lebesgue measure and with respect to a finite nonnegative measure). Dominated Convergence Theorem and Monotone Converence Theorem (statements and related examples).
- 12. C¹ functions, absolutely continuous functions ($\varepsilon \delta$ partition definition and equivalent Lebesgue integral definition), Lip¹ functions, and CBV functions (definitions, relations to each other, and examples, including Cantor function).
- 13. L^p spaces (primarily L¹, L² and L^{∞}), with respect to Lebesgue measure on [0,1] and with respect to an arbitrary finite non-negative measure. Hölder's inequality in L^p and Schwarz's inequality in L². (also $l^{\rm p}$).
- 14. Product measures and Fubini's Theorem (Statements and examples).
- 15. Vitali Covering Theorem, Lebesgue Density Theorem, and Lebesgue Differentiablity Theorem (not the proofs).