Circa 1990 General Examination in Analysis (administered by J. B. Brown). Answer at least 8 questions:

CONTINUITY AND DIFFERENTIABILITY

- 1. Describe a continuous nowhere differentiable $f: [0,1] \to R$.
- 2. Describe a differentiable $f:[0,1] \to R$ such that f' is not continuous. Can f' be totally discontinuous?
- 3. For each n, describe
 - (1) an *n*-times differentiable $f: [0,1] \to R$ such that $f^{(n)}$ is not continuous, and
 - (2) an *n*-times continuously differentiable $f: [0,1] \to R$ which is not (n+1)-times differentiable.

MEASURE AND CATEGORY

- 4. Define what it means to say that a subset of R is of Lebesgue measure zero and what it means to say it is of first category.
- 5. Prove that a countable subset of R is of Lebesgue measure zero and of first category.
- 6. Give an example of first category subset of [0,1] which is of Lebesgue measure 1.

MEASURABLE FUNCTIONS

- 7. If A is a sigma algebra of subsets of some set Ω , define what it means to say that a function $f: \Omega \to R$ is measurable with respect to A.
- 8. Prove that if f_1, f_2, \ldots is a sequence of A-measurable functions converging pointwise to a function f, then f is A-measurable.

RIEMANN AND LEBESGUE INTEGRALS

- 9. Define the Riemann and Lebesgue integrals of a function $f: [0,1] \to R$.
- 10. Give an example of a bounded Baire-1 function which is not Riemann integrable. Explain why such a function would have to be Lebesgue integrable.
- 11. Give an example of a derivative on [0,1] which is not Lebesgue integrable.

L^p SPACES

- 12. Define $L^{p}[0,1]$ and $L^{p}(R)$ for p > 0.
- 13, Prove that $L^2[0,1] \subseteq L^1[0,1]$.
- 14, Show that $L^2(R) \not\subseteq L^1(R)$ and $L^1(R) \not\subseteq L^2(R)$.