January 1993 General Examination in Analysis (administered by J. B. Brown).
$\underline{\text { Work at least } 8 \text { problems. }}$
1.a) Define what it means to say that a subset M of $[0,1]$ is (i) nowhere dense, (ii) first category, (iii) Lebesgue measurable.
b) Give an example of a first category subset of $[0,1]$ of measure 1 .
2. Given a measure space $(\Omega, \mathbf{A}, \mu)$ and a function $f: \Omega \rightarrow R$, (a) define what it means to say that f is A-measurable. (b) Prove that if f and g are A-measurable, then $f+g$ is A-measurable.
(Hypothesis for 3-6) Let f, f_{1}, f_{2}, \ldots be real valued functions which are measurable with respect to a σ-algebra \mathbf{A} on a set Ω, and let μ be a (finite) measure on \mathbf{A}.
3. Define what it means to say that (a) $\left\{f_{n}\right\}$ converges to f in meansure (μ), (b) $\left\{f_{n}\right\}$ converges to f uniformly, (c) $\left\{f_{n}\right\}$ converges to f almost everywhere (μ), (d) $\left\{f_{n}\right\}$ converges to f in the $L^{1}(\mu)$ sense, (e) $\left\{f_{n}\right\}$ converges to f pointwise.
4. Line up the notions of convergence of $\# 3$ in-so-far-as which implies which. Give an example which shows that at least two of these implications don't hold if the measure μ is σ-finite rather than finite.
5. Prove that if $\left\{f_{n}\right\}$ converges pointwise on Ω to some function g, then g is A-measureable.
6. Give an example where $\left\{f_{n}\right\}$ converges in measure (μ) to a function f but $\left(f_{n}\right)$ does not converge almost everywhere (μ) to f.
7. State the "Lebesgue Dominated Convergence Theorem" (about moving " $\lim _{n \rightarrow \infty}$ " inside or outside the integral sign).
8. Define what it means to say that a function $f:[0,1] \rightarrow R$ is absolutely continuous, and give an example of a continuous function f which is of bounded variation on $[0,1]$ but not absolutely continuous.
9. Define $\ell^{p}, L^{p}[0,1], L^{p}(R)$, and $L^{p}(\mu)$ for $0<p \leq \infty\left\{\right.$ you can make the L^{p}-spaces collections of functions or collections of equivalence classes of functions, either way is OK \}.
10. (a.) Prove that $L^{2}[0,1] \subseteq L^{1}[0,1]$.
(b.) Give an example to show that $L^{2}(R) \nsubseteq L^{1}(R)$.

