Time: 3:00-5:30 p.m.
Note: Please solve any eight of the following problems.

1. (a) For any two complex numbers z_{1} and z_{2}, prove that
$\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$, and derive the necessary and sufficient conditions under which the above inequality becomes equality, assuming both z_{1} and z_{2} are non zero.
(b) Show that if z and z^{\prime} correspond to diametrically opposite points on the Riemann sphere then $z \bar{z}^{\prime}=-1$.
2. State and prove Gauss-Lucas Theorem concerning the zeros of a polynomial and its derivative.
3. (a) Prove that the truth of Cauchy Riemann equations is a necessary condition for a function to be differentiable, and state the conditions on the function so that this condition becomes a necessary and sufficient for a function to be differentiable at a point.
(b) Let a function f be analytic in a region Ω. Show that if \bar{f} is also analytic in Ω, then f must be a constant.
4. Let $f(z)$ be analytic inside and on a rectangle R. Then prove that

$$
\int_{\partial R} f(z) d z=0
$$

where ∂R denotes the boundary of R.
 for every z with $|z|<R$, the series converges absolutely.
(b) State Cauchy's Integral Formula and use it to evaluate the integral $\int_{|z|=2} \frac{\sin z}{(z-\pi / 4)^{3}} d z$.
6. (a) State and prove Liouville's theorem.
(b) State Open Mapping Theorem and use it to prove the Maximum Modulus Principle.
7. Use residue theorem to evaluate the integrals
(a) $\int_{0}^{\infty} \frac{x \sin x}{x^{2}+4} d x$
(b) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$
8. Use Argument Principle to prove Rouché's Theorem. Then use Rouché's Theorem to prove Fundamental Theorem of Algebra.
9. State Schwarz's lemma and use it to prove that if $f(z)$ is analytic for $|z| \leq 1,|f(z)| \leq$ M for $|z|=1$ and $f(a)=0$ where $|a|<1$, then

$$
|f(z)| \leq M\left|\frac{z-a}{\bar{a} z-1}\right|
$$

