Matrices PreLim Exam Summer 2009

Answer all of the *State* type problems, work all of the numerical examples, and 5 of the *Prove* type problems.

- (1) State the spectral mapping theorem. Prove the same.
- (2) State Gershgorin's Theorem. Prove the same.
- (3) Let $A \in \mathbf{Q}^{4 \times 4}$. Suppose that as a complex matrix, A is similar to

$$B = \begin{bmatrix} i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Form of A , $t I \in \mathbf{O}[t]^{4 \times 1}$

Find the Smith Normal Form of $A - tI \in \mathbf{Q}[\mathbf{t}]^{4 \times 4}$. Repeat for

$$B = \begin{bmatrix} i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

- (4) Find 3×3 symmetric matrix P such that for all $v \in \mathbb{R}^3$, Pv is the point on the plane x y + z = 0 closest to v.
- (5) State Schur's Triangularization theorem. Outline a proof of the same.
- (6) State the definition of normal matrix, and unitary matrix. Prove that a matrix is normal if and only if it is unitarily diagonalizable.
- (7) Hermitian Matrix Eigenvalues. Let A be $n \times n$ complex Hermitian.
 - (a) State the interlacing inequalities.
 - (b) State the inequalities that exist between the eigenvalues of A and the diagonal entries of A
 - (c) Discuss the converses of the theorems stated in part (a) and (b).
 - (d) Prove that (a) implies (b).
- (8) State Perron's Theorem for positive matrices.
- (9) Nonnegative irreducible matrices
 - (a) State the definition of irreducible matrix.
 - (b) State the definition and or characterization of primitive matrix.
 - (c) Suppose that A is nonnegative and irreducible with k > 1 eigenvalues of maximum absolute value. State some of equivalent characterizations of the number k
 - (d) Use part (c) to prove that a symmetric nonnegative irreducible matrix is either primitive or permutation similar to this block form:

$$\begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$$

- (10) Norms
 - (a) State the definition of *norm* $|| \cdot ||$ on $\mathbf{R}^{\mathbf{n}}$.
 - (b) State the definition of the operator norm induced on $\mathbf{R}^{\mathbf{n}\times\mathbf{n}}$ by $||\cdot||$.
 - (c) Prove that the induced norm satisfies the inequality $||AB|| \leq (||A||)(||B||)$