Linear Algebra Preliminary Exam, 2011 August 20, 2011, 9:00 a.m.-12:00 p.m., Parker 250 Professor T.Y. Tam

Name:
For full credit, show all steps in details
Choose 5 out of 7

1. (a) Define unitary and normal matrices.
(b) Prove Schur's triangularization theorem by induction: For $A \in M_{n}(\mathbb{C})$, there is a unitary matrix $U \in M_{n}$ such that $U^{*} A U$ is upper triangular.
(c) State the real analog of Schur's triangular theorem for $A \in M_{n}(\mathbb{R})$.
(d) Use Schur's triangularization to prove the spectral theorem for normal matrices, i.e., for each normal $A \in M_{n}$, there is a unitary matrix $U \in M_{n}$ such that $U^{*} A U$ is diagonal.
2. (a) State Jordan canonical form theorem for $A \in M_{n}$.
(b) Use the Jordan canonical form to show that each $A \in M_{n}$ is similar to its transpose A^{T}.
(c) What are the possible Jordan forms of a matrix $A \in M_{n}$ with characteristic polynomial $p_{A}(t)=(t+3)^{4}(t-5)^{2}$?
(d) If the minimal polynomial of $A \in M_{n}$ is $q_{A}(t)=\prod_{i=1}^{m}\left(t-\lambda_{i}\right)^{r_{i}}$, where $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of A, then what is r_{i} in terms of the Jordan blocks of A corresponding to the eigenvalues λ_{i} ? Explain.
3. (a) Show that each $A \in M_{n}$ can be written uniquely as $A=H+i K$ where H and K are Hermitian matrices.
(b) Show that $A \in M_{n}$ is Hermitian if and only if $x^{*} A x$ is real for all $x \in \mathbb{C}^{n}$.
(c) Show that all the eigenvalues of a Hermitian $A \in M_{n}$ are real.
(d) Use interlacing inequalities and induction to show Schur's theorem: Let $A \in$ M_{n} be Hermitian. The diagonal $d:=\left(a_{11}, \ldots, a_{n n}\right)^{T}$ of A is majorized by the eigenvalues $\lambda \in \mathbb{R}^{n}$ of A.
4. (a) Show that all vector norms on a finite dimensional vector space V are equivalent, i.e., there are $m, M>0$ such that $m\|x\|_{\alpha} \leq\|x\|^{\prime} \leq M\|x\|$ for all $x \in V$, where $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are any two vector norms on V.
(b) What is the difference between a matrix norm $\|\cdot\|$ on M_{n} and a vector norm on M_{n} ? Give an example that is a vector norm on M_{n} but not a matrix norm.
(c) Show that if $\|\cdot\|$ is a matrix norm on M_{n}, then $\rho(A) \leq\|A\|$ where $\rho(A)$ is the spectral radius of A.
(d) Is the spectral radius a norm? Explain or give a counterexample.
5. (a) State and prove Gersgorin theorem on $A \in M_{n}$. What happens when we apply the theorem on $D^{-1} A D$ where $D=\operatorname{diag}\left(p_{1}, \ldots, p_{n}\right)$ and p_{1}, \ldots, p_{n} are nonzero?
(b) Suppose that $A \in M_{n}$ is a real matrix whose n Gersgorin discs are all mutually disjoint. Show that all the eigenvalues of A are real.
(c) Show that if A is strictly diagonally dominant, then $A \in M_{n}$ is nonsingular.
(d) Prove that if $A \in M_{n}$, then $\rho(A) \leq \min \left\{\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|, \max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|\right\}$.
6. (a) Prove SVD for $A \in M_{m, n}: A=V \Sigma W^{*}, V \in M_{m}, W \in M_{n}$ unitary, Σ "diagonal".
(b) Show that if $\Sigma=\left[\begin{array}{ll}S & 0 \\ 0 & 0\end{array}\right]$ where $S=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ and r is the rank of $A \in$ $M_{m, n}$, then $A=V_{1} S W_{1}^{*}$ where $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right], V_{1} \in M_{m, r}$ and $W=\left[\begin{array}{ll}W_{1} & W_{2}\end{array}\right]$, $W_{1} \in M_{n, r}$.
(c) Deduce polar decomposition $\left(A=P U, P \in M_{m}\right.$ positive semidefinite and $U \in$ $M_{m, n}$ has orthonormal rows) from SVD.
7. (a) State Perron theorem (6 statements) on positive matrices $A \in \mathbb{R}_{n \times n}$. When $A \in \mathbb{R}_{n \times n}$ is irreducible nonnegative, which statements remain true? Give counterexamples to those among the six which not true anymore.
(b) Suppose that $A \in M_{n}(\mathbb{R})$ is irreducible nonnegative and that $B \geq 0$ commute with A. If x is the Perron vector of A, prove that $B x=\rho(B) x$, where $\rho(B)$ is the spectral radius of B.
(c) What can we say about the p eigenvalues of an irreducible nonnegative and nonsingular $A \in M_{p}(\mathbb{R})$ where p is a prime number? Why?
