Linear Algebra Preliminary Exam, 2011 August 20, 2011, 9:00 a.m.-12:00 p.m., Parker 250 Professor T.Y. Tam

Name:

For full credit, show all steps in details Choose 5 out of 7

- 1. (a) Define unitary and normal matrices.
 - (b) Prove Schur's triangularization theorem by induction: For $A \in M_n(\mathbb{C})$, there is a unitary matrix $U \in M_n$ such that U^*AU is upper triangular.
 - (c) State the real analog of Schur's triangular theorem for $A \in M_n(\mathbb{R})$.
 - (d) Use Schur's triangularization to prove the spectral theorem for normal matrices, i.e., for each normal $A \in M_n$, there is a unitary matrix $U \in M_n$ such that U^*AU is diagonal.

- 2. (a) State Jordan canonical form theorem for $A \in M_n$.
 - (b) Use the Jordan canonical form to show that each $A \in M_n$ is similar to its transpose A^T .
 - (c) What are the possible Jordan forms of a matrix $A \in M_n$ with characteristic polynomial $p_A(t) = (t+3)^4(t-5)^2$?
 - (d) If the minimal polynomial of $A \in M_n$ is $q_A(t) = \prod_{i=1}^m (t \lambda_i)^{r_i}$, where $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of A, then what is r_i in terms of the Jordan blocks of A corresponding to the eigenvalues λ_i ? Explain.

- 3. (a) Show that each $A \in M_n$ can be written uniquely as A = H + iK where H and K are Hermitian matrices.
 - (b) Show that $A \in M_n$ is Hermitian if and only if x^*Ax is real for all $x \in \mathbb{C}^n$.
 - (c) Show that all the eigenvalues of a Hermitian $A \in M_n$ are real.
 - (d) Use interlacing inequalities and induction to show Schur's theorem: Let $A \in M_n$ be Hermitian. The diagonal $d := (a_{11}, \ldots, a_{nn})^T$ of A is majorized by the eigenvalues $\lambda \in \mathbb{R}^n$ of A.

- 4. (a) Show that all vector norms on a finite dimensional vector space V are equivalent, i.e., there are m, M > 0 such that $m \|x\|_{\alpha} \leq \|x\|' \leq M \|x\|$ for all $x \in V$, where $\|\cdot\|$ and $\|\cdot\|'$ are any two vector norms on V.
 - (b) What is the difference between a matrix norm $\| \cdot \|$ on M_n and a vector norm on M_n ? Give an example that is a vector norm on M_n but not a matrix norm.
 - (c) Show that if $\| \cdot \|$ is a matrix norm on M_n , then $\rho(A) \leq \| A \|$ where $\rho(A)$ is the spectral radius of A.
 - (d) Is the spectral radius a norm? Explain or give a counterexample.

- 5. (a) State and prove Gersgorin theorem on $A \in M_n$. What happens when we apply the theorem on $D^{-1}AD$ where $D = \text{diag}(p_1, \ldots, p_n)$ and p_1, \ldots, p_n are nonzero?
 - (b) Suppose that $A \in M_n$ is a real matrix whose *n* Gersgorin discs are all mutually disjoint. Show that all the eigenvalues of *A* are real.
 - (c) Show that if A is strictly diagonally dominant, then $A \in M_n$ is nonsingular.
 - (d) Prove that if $A \in M_n$, then $\rho(A) \leq \min\{\max_i \sum_{j=1}^n |a_{ij}|, \max_j \sum_{i=1}^n |a_{ij}|\}$.

- 6. (a) Prove SVD for $A \in M_{m,n}$: $A = V\Sigma W^*$, $V \in M_m$, $W \in M_n$ unitary, Σ "diagonal".
 - (b) Show that if $\Sigma = \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix}$ where $S = \text{diag}(\sigma_1, \dots, \sigma_r)$ and r is the rank of $A \in M_{m,n}$, then $A = V_1 S W_1^*$ where $V = [V_1 \ V_2], V_1 \in M_{m,r}$ and $W = [W_1 \ W_2], W_1 \in M_{n,r}$.
 - (c) Deduce polar decomposition $(A = PU, P \in M_m$ positive semidefinite and $U \in M_{m,n}$ has orthonormal rows) from SVD.

- 7. (a) State Perron theorem (6 statements) on positive matrices $A \in \mathbb{R}_{n \times n}$. When $A \in \mathbb{R}_{n \times n}$ is irreducible nonnegative, which statements remain true? Give counterexamples to those among the six which not true anymore.
 - (b) Suppose that $A \in M_n(\mathbb{R})$ is irreducible nonnegative and that $B \ge 0$ commute with A. If x is the Perron vector of A, prove that $Bx = \rho(B)x$, where $\rho(B)$ is the spectral radius of B.
 - (c) What can we say about the p eigenvalues of an irreducible nonnegative and nonsingular $A \in M_p(\mathbb{R})$ where p is a prime number? Why?