Linear Algebra Prelim, 2003

Professor Peter Nylen

- 1. Find a 3×3 matrix A with eigenvalues $\lambda_1 = 0, \lambda_2 = 1, \lambda_2 = -1$ and corresponding eigenvectors $x_1 = [1, 0, 1]^T, x_2 = [1, 0, -1]^T, x_3 = [0, 1, 0]^T$. Explain why there is no matrix with the given λ as eigenvalues and $y_1 = [1, 1, 0]^T, y_2 = [0, 1, 1]^T, y_3 = [1, 0, -1]^T$ the corresponding eigenvectors.
- 2. Find The Jordan Canonical Form of

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -4 & 4 \end{bmatrix}.$$

- 3. Suppose that $A \in \mathbf{M}_{10}(\mathbf{C})$ has eigenvalue 0 only, and that $\operatorname{rank}(A) = 7$, $\operatorname{rank}(A^2) = 4$, $\operatorname{rank}(A^3) = 2$, and $A^4 = 0$. Find the Rational Canonical Form of A.
- 4. Let A be $n \times n$ real symmetric with eigenvalues $\lambda_i, i = 1, \ldots, n$.
 - (a) Let B be the $n 1 \times n 1$ matrix obtained from A by removing the 1^{st} row and column. State the interlacing inequalities that the eigenvalues $\mu_j : j = 1, ..., n-1$ of B must satisfy.
 - (b) State the majorization inequalities that the diagonal entries of A must satisfy.
- 5. Find 3×3 symmetric matrix P such that for all $v \in \mathbb{R}^3$, Pv is the point on the plane x + y + z = 0 closest to v.
- 6. Let $A, B \in M_n$ be given. Show that if $x^*Ax = x^*Bx$ for all $x \in \mathbb{C}^n$, then A = B.

- 7. State the following:
 - (a) Perron's Theorem for positive matrices
 - (b) definition of irreducible matrix, and the generalization of Perron's theorem to such matrices.
 - (c) The definition of Primitive matrix, and the generalization of Perron's theorem to such matrices.
- 8. Let A be an irreducible nonnegative matrix. State:
 - (a) the definition of h, the "index of irreducibility".
 - (b) conditions equivalent to "A has index of irreducibility h".
- Prove: If A ≥ 0 is n × n doubly stochastic and irreducible with index of irreducibility h, then n is divisible by h.
- 10. State the definition of the following terms and phrases:
 - (a) norm on \mathbb{R}^n
 - (b) norm $M_n(R)$ induced by a given norm on \mathbb{R}^n
 - (c) all norms on \mathbb{R}^n are equivalent.
- 11. Prove that the norm $|| \cdot ||_2$ on $M_n(R)$ induced by the ℓ_2 (Euclidean) norm is given by the formula $||A|| = \sqrt{\lambda_{\max}(A)}$.
- 12. Let $||\cdot||$ be a given norm on \mathbb{R}^n . Prove that the set $\{x \in \mathbb{R}^n : ||x|| \leq 1\}$ is convex.