Linear Algebra Preliminary Exam Summer 2007 Professor Thomas H. Pate

Name:

For full credit show all steps in detail.

1. Give an example of a non-diagonalizable matrix. Prove that your example is nondiagonalizable.
2. Suppose M is an $n \times n$ complex matrix with n distinct eigenvalues. Prove that M is diagonalizable.
3. What do you know about the eigenvalues of the following kinds of matrices? (a.) unitary, (b.) Hermitian, (c) skew-Hermitian ($A^{*}=A$).
4. Suppose A is $m \times n$ and B is $n \times m$. What is the relationship between the characateristic polynomial of $A B$ and the characteristic polynomial of $B A$? For extra credit prove that this relationship exists.
5. Suppose A is an $n \times n$ complex matrix. Prove that there exists a unitary matrix U such that $U^{*} A U$ is upper triangular.
6. Suppose $A \in \mathbb{C}^{n \times n}$ and let $p(z)$ be the characteristic polynomial of A. Prove that $p(A)=0$.
7. Suppose $A \in \mathbb{C}^{n \times n}$ and each eigenvalue, λ, of A lies inside the unit circle. Prove that there exists a matrix norm $\|\cdot\|$ such that $\|A\|<1$.
8. Suppose $A \in \mathbb{C}^{n \times n}$. Prove that $\lim _{k \rightarrow \infty} A^{k}$ exists and is the zero matrix if and only if each eigenvalue of A lies inside the unit circle in the complex plane.
9. Suppose V is a complex vector space and T is a linear map from V to V that is one-to-one. Prove that if $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent members of V, then $T v_{1}, T v_{2}, \ldots, T v_{k}$ are also linearly independent members of V.
10. Suppose V and W are vector spaces over field \mathbb{F} and V is finite dimensional. Suppose T is a linear map from V to W. Prove that $\operatorname{dim} V=\operatorname{dim}(\operatorname{Ker} T)+\operatorname{dim}(\operatorname{Range}(T))$.
11. Suppose A and B are diagonalizable $n \times n$ complex matrices. When are A and B simultaneously diagonalizable? State and prove a theorem justifying your answer.
12. Suppose T is a linear map from V to V where V is a vector space and let W be a proper invariant subspace of V Assume V is finite dimensional. Let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a basis for W and extend to get a basis $B=\left\{w_{1}, w_{2}, \ldots, w_{k}, w_{k+1}, \ldots, w_{n}\right\}$ for V. Carefully describe the matrix $M_{B}^{B}(T)$, that represents T with respect to B. If $W^{\prime}=\operatorname{span}\left\{w_{k+1}, \ldots, w_{n}\right\}$ and W^{\prime} is also invariant under T. Then, what is the appearance of $M_{B}^{B}(T)$?
13. Suppose V is a finite dimensional vector space and $T: V \rightarrow V$ is linear. Let W be a subspace of V invariant under T. What property must W have in order that there exists a complementary invariant subspace?
14. Suppose $T: V \rightarrow V$ is linear and V is an n-dimensional complex vector space. If λ is an eigenvalue of T, then the generalized eigenspace associated with λ is $\operatorname{Ker}\left((T-\lambda I)^{n}\right)$.
(a) Prove that generalized eigenspaces of T are invariant under T.
(b) Prove that if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct eigenvalues of T, then the sum $\operatorname{Ker}\left(\left(T-\lambda_{1} I\right)^{n}\right)+\operatorname{Ker}\left(\left(T-\lambda_{2} I\right)^{n}\right)+\cdots+\operatorname{Ker}\left(\left(T-\lambda_{k} I\right)^{n}\right)$ is direct.
(c) Prove that V is the direct sum of the generalized eigenspaces of T.
