Linear Algebra Preliminary Exam, 2008

Professor T.Y. Tam

Name:
For full credit, show all steps in details
Choose 6 out of 7

1. (a) Prove Schur's triangularization theorem by induction: For $A \in M_{n}(\mathbb{C})$, there is a unitary matrix $U \in M_{n}$ such that $U^{*} A U$ is upper triangular.
(b) Can we get upper triangular form for $A \in M_{n}(\mathbb{R})$ via real orthogonal matrices similarity? If not, what is the best form?
(c) Use Schur's triangularization to prove the spectral theorem for Hermitian matrices, i.e., for each Hermitian $A \in M_{n}$, there is a unitary matrix $U \in M_{n}$ such that $U^{*} A U$ is real diagonal.
(d) Is the spectral theorem for real symmetric matrices also true? i.e., for each $A \in$ $M_{n}(\mathbb{R})$, there is a real orthogonal matrix O such that $O^{T} A O$ is real diagonal. Explain.
2. (a) State the theorem of Jordan canonical form on $A \in M_{n}$.
(b) What are the possible Jordan forms of a matrix $A \in M_{n}$ such that $A^{3}=I$?
(c) If $A \in M_{n}$ has characteristic polynomial $p_{A}(t)=(t-3)^{3}(t-2)^{2}$ and minimal polynomial $q_{A}(t)=(t-3)^{2}(t-2)$, what is the Jordan canonical form of A ?
(d) Use the Jordan canonical form to show that $\lim _{m \rightarrow \infty} A^{m}=0$ if and only if the spectral radius $\rho(A)<1$. Give two simple examples to show that if $\rho(A)=1, A$ may or may not converge.
3. Let S, T be subspaces of a vector space V.
(a) Use the dimension theorem $\operatorname{dim}(S \cap T)=\operatorname{dim} S+\operatorname{dim} T-\operatorname{dim}(S+T)$ to prove the interlacing inequalities: Let $A \in M_{n}$ be Hermitian with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$ and let $B \in M_{m}$ be a principal submatrix of A with eigenvalues $\beta_{1} \geq \cdots \geq \beta_{m}$. Then

$$
\lambda_{k} \geq \beta_{k} \geq \lambda_{k+n-m}, \quad k=1, \ldots, m .
$$

When $m=n-1$, what is the form of the interlacing inequalities?
(b) Define majorization $x \prec y$ where $x, y \in \mathbb{R}^{n}$.
(c) Use interlacing inequalities and induction to show Schur's theorem: Let $A \in$ M_{n} be Hermitian. The diagonal $d:=\left(a_{11}, \ldots, a_{n n}\right)^{T}$ of A is majorized by the eigenvalues $\lambda \in \mathbb{R}^{n}$ of A.
(d) Is the converse of Schur's theorem true? If so, state it explicitly.
4. (a) State and prove Gersgorin theorem on $A \in M_{n}$.
(b) Show that if A is strictly diagonally dominant, then $A \in M_{n}$ is nonsingular.
(c) Prove that if $A \in M_{n}$, then $\rho(A) \leq \min \left\{\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|, \max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|\right\}$.
(d) Use (c) to show that $|\operatorname{det} A| \leq \min \left\{\prod_{i=1}^{n}\left(\sum_{j=1}^{n}\left|a_{i j}\right|\right), \prod_{j=1}^{n}\left(\sum_{i=1}^{n}\left|a_{i j}\right|\right)\right\}$.
5. (a) Define the notion of dual norm of a norm $\|\cdot\|$ on \mathbb{C}^{n}. Show that vector norms $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ on \mathbb{C}^{n} are dual to each other.
(b) What is the difference between a matrix norm $\|\cdot\|$ on M_{n} and a vector norm on M_{n} ? Give an example that is a vector norm on M_{n} but not a matrix norm.
(c) Show that if $\|\cdot\|$ is a matrix norm on M_{n}, then $\rho(A) \leq\|A\|$.
(d) Prove Gelfand's spectral theorem: $\rho(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}$ for any matrix norm \|| • \|| (you may use Question 2(d))
6. (a) Let $A \in M_{m, n}$ with $m \leq n$. Prove that SVD $\left(A=V \Sigma W^{*}, V \in M_{m}, W \in M_{n}\right.$ unitary, Σ "diagonal") and polar decomposition ($A=P U, P \in M_{m}$ positive semidefinite and $U \in M_{m, n}$ has orthonormal rows) are equivalent.
(b) Prove either the above SVD or polar decomposition.
(c) Show that if $\Sigma=\left[\begin{array}{ll}S & 0 \\ 0 & 0\end{array}\right]$ where $S=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ and r is the rank of $A \in$ $M_{m, n}$, then $A=V_{1} S W_{1}^{*}$ where $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right], V_{1} \in M_{m, r}$ and $W=\left[\begin{array}{ll}W_{1} & W_{2}\end{array}\right]$, $W_{1} \in M_{n, r}$.
(d) Compute SVD of a nonzero vector $x \in M_{n, 1}(\mathbb{C})$.
7. (a) Define irreducible $A \in M_{n}$. Then give three equivalent conditions of irreducibility.
(b) State Perron theorem (6 statements) on positive matrices $A \in \mathbb{R}_{n \times n}$. When $A \in \mathbb{R}_{n \times n}$ is irreducible nonnegative, which statements are true (i.e., Frobenius theorem)? Give counterexamples to those not true.
(c) Suppose that $A \in M_{n}(\mathbb{R})$ is irreducible nonnegative and that $B \geq 0$ commute with A. If x is the Perron vector of A, prove that $B x=\rho(B) x$.
(d) What can we say about the 7 eigenvalues of an irreducible nonnegative and nonsingular $A \in M_{7}(\mathbb{R})$? Why?

