Dr. Zenor's study help for MH 650-2

Definition 1 Let X be a point set. The ordered pair (X, \mathcal{T}) is called a topological space if

- 1. \mathcal{T} is a collection of subsets of X.
- 2. X is in \mathcal{T} and the empty set is in \mathcal{T} .
- 3. T is closed under unions and finite intersections.

The members of \mathcal{T} are called open sets.

Definition 2 P is a limit point of the set H if every open set containing P contains a point of H distinct from P.

A set H is closed provided it contains all of its limit points. The interior of a set H is the union of all open subsets of H. The set N is a neighborhood of the point x if x is in the interior of N.

Question 1 Must a finite set be closed?

Theorem 1 The union of two closed sets is closed.

Theorem 2 If \mathcal{H} is a collection of closed sets with a common part, then that common part is closed.

Definition 3 A point P is a boundary point of the set H provided that every open set containing P contains a point in H and a point in X - H.

Theorem 3 If R is an open set and p is in R, then p is not a boundary point of R.

Question 2 Must the common part of a collection of open sets be open?

Question 3 If a set is not open, must it be closed.

Definition 4 If H is a set, then the closure of H is H together with all of its limit points. We will denote the closure of H by cl(H).

Theorem 4 If H is a set, then cl(H) is closed.

Definition 5 The space X is T_1 if p and q are distinct points, then there is an open containing p but not q.

Theorem 5 Finite subsets of a T_1 space are closed.

Definition 5.5: Suppose that (X, \mathcal{T}) is a topological space and \mathcal{B} is a subset of \mathcal{T} such that if U is an open set containing the point p, then there is a member B of \mathcal{B} such that $p \in B \subset U$. Then \mathcal{B} is called a *basis* for \mathcal{T} .

Question 4 Is $cl(H) \cup cl(K) = cl(H \cup K)$?

Question: Is $cl(H) \cap cl(K) = cl(H \cap K)$?

Definition 6 The space X is Hausdorff if it is true that if p and q are distinct points, then there are mutually exclusive open sets U and V such that $p \in U$ and $q \in V$.

Question 5 Is there a T_1 -space that is not Hausdorff?

Unless otherwise stated, we will assume that our topological spaces are Hausdorff.

Definition 7 The collection of sets \mathcal{U} covers the set H if each point of H is contained in a member of \mathcal{U} .

Definition 8 The set H is compact if it is true that whenever \mathcal{U} is a collection of open sets covering H, then some finite subcollection of \mathcal{U} covers H.

Theorem 6 If H is a compact subset of X, then H is closed.

Theorem 7 If H is a compact subset of X, then every infinite subset of H has a limit point.

Definition 9 The collection of sets H is centered if every finite subcollection of H has a point in common.

Theorem 8 The set H is compact if and only if every centered collection of closed subsets of H has a nonempty intersection.

Definition 10 The collection of sets \mathcal{H} is monotone if whenever A and B are in \mathcal{H} , then one is a subset of the other.

Theorem 9 The space X is compact if and only if every monotone collection of nonempty closed subsets of X has a nonempty intersection.

Question 6 If every infinite subset of X has a limit point, must X be compact?

AXIOM Every set can be well ordered.

Question 7 Is ω_1 compact?

Question 8 Is $\omega_1 + 1$ compact?

Definition 11 A metric function on a set X is a function $\rho: X \times X \to [0,\infty)$ such that

- 1. $\rho(x, y) = 0$ if and only if x = y.
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$.

A metric space is an ordered pair (X, ρ) , where ρ is a metric function on X. We will speak of a metric space X with the existence of the metric function ρ understood.

If ρ is a metric function on X and $x \in X$, then we will denote by $B_{\epsilon}(x)$ the set $\{y \in X | \rho(x, y) < \epsilon\}$. We will say that the topological space X is metrizable provided that there is metric ρ on X, such that $\{B_{\epsilon}(x) | x \in X \text{ and } \epsilon > 0\}$ is a basis for the topology on X.

If p is a point in the metric space X and H is a subset of X, then p is a limit point of H if for every $\epsilon > 0$, there is a point q of H such that $0 < \rho(p,q) < \epsilon$.

Question 9 How many functions are there from ω into ω ?

Definition 12 A space X is regular (T_3) if whenever U is an open set containing the point p, there is an open set V containing p such that $cl(V) \subset U$.

Definition 13 The space X is locally compact provided that for every p in X, there is an open set U containing p such that cl(U) is compact

Theorem 10 A locally compact Hausdorff space is regular.

Theorem 11 If H and K are mutually exclusive compact subsets of X, then there are mutually exclusive open sets, one containing H and the other containing K.

Theorem 12 The plane is locally compact.

Question 10 Is ω_1 locally compact?

Definition 14 A space X is Lindelöf if every open cover of X has a countable subcover.

Definition 15 The space X is normal if whenever H and K are mutually exclusive closed sets, there are mutually exclusive open sets U and V such that $H \subset U$ and $K \subset V$.

Theorem 13 Every regular Lindelöf space is normal

Theorem 14 Every metrizable space is normal.

Definition 16 If X and Y are topological spaces, then the function $f : X \to Y$ is continuous provided that if U is an open set in Y containing f(p), then there is an open set V in X containing p such that $f(V) \subset U$.

Theorem 15 The space is normal if and only if it is true that if H and K are mutually exclusive closed sets, then there is a continuous function $f : X \to [0,1]$ such that $H \subset f^{-1}(0)$ and $K \subset f^{-1}(1)$.

Theorem 16 If X is normal, H is a closed subset of X, and $f : H \to [0,1]$ is continuous, then there is a continuous $F : X \to [0,1]$ such that f(x) = F(x) for every x in H.

Definition 17 The set $H \subset X$ is dense in X if X = cl(H). The space X is separable if there is a countable dense subset of X.

Theorem 17 If X is metrizable, then the following are equivalent:

- 1. X is Lindelöf.
- 2. X has a countable basis.
- 3. Every uncountable subset of X has a limit point.
- 4. X is separable.
- 5. Every uncountable subset of X has a limit point in itself.

Theorem 18 If X is metrizable, then the subset K of X is compact if and only if K is closed and every infinite subset of K has a limit point.

Definition 18 The subset H of X is a zero set if there is a continuous function $f: X \to [0, \infty)$ such that $H = f^{-1}(0)$.

Theorem 19 If H is a zero set in X, then H is closed.

Theorem 20 If X is metrizable then every closed subset of X is a zero set.

Question 11 Must the common part of two zero sets be a zero set?

Question 12 Must the union of two zero sets be a zero set?

Question 13 Is every subset of a Lindelöf space Lindelöf?

The Tangent circle space. $X = \{(x, y) \in \mathbb{R}^2 | y \ge 0\}$ If y > 0, then a basic open set containing (x, y) is the interior of a disk containing (x, y). If y = 0, and if $\epsilon > 0$, then $\{(u, v) : \rho((u, v), (x, \epsilon)) < \epsilon\} \cup \{(x, 0)\}$ is a basic open set containing (x, 0).

Sorgenfrey's line: The real line where basic open sets are sets of the form [a, b).

Question 14 Which of the following properties does the Tangent Circle space have:

- 1. Separable?
- 2. Lindelöf?
- 3. Normal?
- 4. Regular?
- 5. Completely regular?
- 6. Locally compact?
- 7. Developable?
- 8. Strongly developable?
- 9. Metrizable?
- 10. Paracompact?
- 11. Countable basis?

Question 15 Which of the following properties does the Sorgenfrey line have:

- 1. Separable?
- 2. Lindelöf?
- 3. Normal?
- 4. Regular?
- 5. Completely regular?
- 6. Locally compact?
- 7. Developable?
- 8. Strongly developable?
- 9. Metrizable?
- 10. Paracompact?

11. Countable basis?

Question 16 If A is a well-ordered set and $A' = a_1 > a_2 > \dots$ is a subset of A, then how large (in cardinality) can A be? (i.e., can it be ifninite?).

Definition 19 A set $H \subset X$ is a G_{δ} -set provided that there is a sequence of open sets U_1, U_2, \ldots such that $H = \bigcap_{i=1}^{\infty} U_i$. $H \subset X$ is a regular G_{δ} -set provided that there is a sequence of open sets U_1, U_2, \ldots such that $H = \bigcap_{i=1}^{\infty} U_i = \bigcap_{i=1}^{\infty} \overline{U}_i$.

Definition 20 The space X is perfectly nomal if X is normal and each closed subset of X is a G_{δ} -set.

Theorem 21 The continuous image of a compact space is compact.

Theorem 22 The following statements are equivalent:

- 1. X is perfectly normal.
- 2. every closed subset of X is a regular G_{δ} -set.
- 3. Every closed subset of X is a zero set.

Definition 21 If \mathcal{U} and \mathcal{V} are collections of sets, then \mathcal{U} refines \mathcal{V} if for every $U \in \mathcal{U}$ there is a $V \in \mathcal{V}$ such that $U \subset V$.

Definition 22 The collection of sets \mathcal{U} is locally finite if, for every x, there is an open set W containing x such that $\{U \in \mathcal{U} | W \cap \mathcal{U}\}$ is finite.

Definition 23 The space X is paracompact if for each open cover \mathcal{U} of X, there is a locally finite open refinement of \mathcal{U} covering X.

Theorem 23 Every metric space is paracompact.

Theorem 24 Every paracompact space is normal.

Theorem 25 Every regular Lindelöf space is paracompact.

Theorem 26 The space X is compact if and only if every infinite subset of X has a limit point and X is paracompact.

Theorem 27 The regular space X is Lindelöf if and only if every uncountable subset of X has a limit point and X is paracompact.

Question 17 Which of the following properties does ω_1 have:

- 1. Separable?
- 2. Lindel" of?
- 3. Paracompact?
- 4. Normal?
- 5. Perfectly normal?
- 6. Locally compact?

- 7. Developable?
- 8. Strongly developable?

Theorem 28 Suppose that $f: \omega_1 \to \omega_1$ is such that $f(\alpha) < \alpha$ for all $\alpha \in \omega_1$. Then there is a γ such that $f(\alpha) = \gamma$ for uncountably many α .

Question 18 Is every subspace of a paracompact space paracompact?

Definition 24 The sets H and K are mutually separated if $\overline{H} \cap K = H \cap \overline{K} = \emptyset$.

The set H is connected if it is not the sum of two non-empty mutually separated sets. A compact and connected set is called a continuum.

If H and K are sets, then the continuum C is irreducible from H to K if C intersects both H and K and no proper subcontinuum intersects both H and K.

If H is a set and $x \in H$, then the component of x in H is the union of all the connected subsets of H that contains x.

Theorem 29 If \mathcal{H} is a collection of connected sets with a point in common, then $\cup \mathcal{H}$ is connected.

Theorem 30 The continuous image of a connected set is connected.

Theorem 31 If \mathcal{H} is a monotonic collection of continuua, then $\cap \mathcal{H}$ is connected.

Theorem 32 If C is irreducible from the closed sets H and K, then every point of $H \cap C$ is a limit point of C - H.

Theorem 33 If C is connected, then \overline{C} is connected.

Theorem 34 Suppose that H and K are mutually exclusive closed subsets of the compact set M and M cannot be divided into mutually exclusive closed sets A and B, one containing H and the other containing K. Then M contains a continuum C which is irreducible from H to K.

Theorem 35 Suppose that C is a continuum, U is an open set containing $x \in C$, where $C - U \neq \emptyset$, and K is the component of x in $C \cap U$. The the boundary of U contains a limit point of K.

Definition 25 If X and Y are topological spaces, then $\mathcal{B} = \{U \times V | U \text{ is open in } X \text{ and } V \text{ is open in } Y\}$ is a basis for the product topology on $X \times Y$.

Question 19 If X and Y have property \mathcal{P} , then must $X \times Y$ have property \mathcal{P} ?

a. P: Compact	b. \mathcal{P} : connected?
c. \mathcal{P} : normal?	$d. \ \mathcal{P}: \ Lindel\"{of}?$
$e. \ \mathcal{P}: \ paracompact?$	$f. \ \mathcal{P}: \ metrizable?$
g. \mathcal{P} : countable bases?	$h. \ \mathcal{P}:separable?$
$i. \ \mathcal{P}: \ regular?$	$j. \ \mathcal{P}: \ Hausdorff?$
k. \mathcal{P} : Completely regular?	$l. \ \mathcal{P}: \ locally \ compact?$
m. \mathcal{P} : closed sets are G_{δ} -sets.?	$n. \ \mathcal{P}: \ developable?$
o. \mathcal{P} : strongly developable.	

Definition 26 A set H is perfect if every point of H is a limit point of H.

Theorem 36 Every compact, perfect space is uncountable.

Theorem 37 Suppose that C is a compact, perfect, metric space with a basis of open and closed sets. Then C is homeomorphic to the Cantor set.

Question 20 Is the product of the Cantor set with itself homeomorphic to the Cantor set?

Question 21 Is every ordered space normal?

Definition 27 Suppose that (X, ρ) is a metric space and that $\{x_n\}$ is a sequence of points in X. Then $\{x_n\}$ is Cauchy if, for every $\epsilon > 0$, there is an integer N such that if n > N and m > N, then $\rho(x_n, x_m) < \epsilon$. The space X is completely metrizable if there is a metric ρ on X, compatible with the topology on X, such that every Cauchy sequence converges.

Theorem 38 Every compact metrizable space is completely metrizable.

Definition 28 The set $H \subset X$ is nowhere dense provided that \overline{H} contains no open set.

Theorem 39 If $H \subset X$ is nowhere dense, then $X - \overline{H}$ is a dense open set.

Theorem 40 If X is completely metrizable, then X is not the sum of countably many nowhere dense sets.

Theorem 41 If X is locally compact, then X is not the sum of countably many nowhere dense sets.

Theorem 42 If X a G_{δ} -set in a compact space, then X is not the sum of countably many nowhere dense sets.

Definition 29 The space X is completely regular provided that if U is an open set containing $x \in X$, there is a continuous function $f: X \to [0,1]$ such that f(x) = 0 and $(X - U) \subset f^{-1}(1)$.

Definition 30 The space X is developable if there is a sequence $\mathcal{G}_1, \mathcal{G}_2, \ldots$ of collections of open sets covering X such that

- 1. $\mathcal{G}_{n+1} \subset \mathcal{G}_n$ for each n.
- 2. If U is an open set containing x, then there is an n such that if $x \in G \in \mathcal{G}_n$, then $G \subset U$.

The sequence $\mathcal{G}_1, \mathcal{G}_2, \ldots$ is called a development for the topology on X.

The space X is strongly developable if there is a development $\mathcal{G}_1, \mathcal{G}_2, \ldots$ for X such that if U is an open set containing x, then there is an n such that if G_1 and G_2 are in \mathcal{G}_n , $x \in G_1$ and $G_1 \cap G_2 \neq \emptyset$, then $G_1 \cup G_2 \subset U$.

Theorem 43 If H is a subset of the developable space X, then H is compact if and only if H is closed and every infinite subset of H has a limit point.

Theorem 44 The developable space X is Lindelöf if and only if every uncountable subset of X has a limit point.

Theorem 45 If X is strongly developable, then X is normal.

Exercise 1 Let $\mathcal{U} = \{U_{\alpha} | \alpha < \gamma\}$ be a well ordered open cover of the developable space X. Let $\{\mathcal{G}_n\}$ be a development for X. For each n and for each $\alpha < \gamma$, let $H_{(\alpha,n)} = \{x \in U_{\alpha} | st(x, \mathcal{G}_n) \subset U_{\alpha}\}$ and let $K_{(\alpha,n)} = H_{(\alpha,n)} - \bigcup_{\beta < \alpha} U_{\beta}$. Show that

- 1. Show that $\mathcal{K} = \{K_{(\alpha,n)} | n < \omega, \alpha < \beta\}$ covers X.
- 2. Show that $\mathcal{K} = \{K_{(\alpha,n)} | n < \omega, \alpha < \beta\}$ refines \mathcal{U} .

- 3. Show that for each n, if $A \subset \beta$, then $\cup \{K_{(\alpha,n)} | \alpha \in A\}$ is closed.
- 4. Show that for each n, if $\alpha_1 \neq \alpha_2$, then $K_{(\alpha_1,n)} \cap K_{(\alpha_2,n)} = \emptyset$.

Exercise 2 Suppose that H and K are mutually exclusive closed sets and $\{U_n\}_{n<\omega}$ and $\{V_n\}_{n<\omega}$ are open covers of H and K, respectively, such that, for each n, $\overline{U_n} \cap K = \emptyset$ and $\overline{V_n} \cap H = \emptyset$. Then there are mutually exclusive open sets U and V, with $H \subset U$ and $K \subset V$.

Definition 31 The space X is collectionwise normal if it is true that if \mathcal{H} is a discrete collection of closed sets, then there is a collection of mutually exclusive open sets $\{O(H)|H \in \mathcal{H}\}$ such that $H \subset O(H)$.

Theorem 46 A paracompact space is collectionwise normal.

Theorem 47 A strongly developable space is collectionwise normal.

Theorem 48 If X is collectionwise normal and \mathcal{H} is a discrete collection of closed sets, then there is a discrete collection of open sets $\{O(H)|H \in \mathcal{H}\}$ such that $H \subset O(H)$, for each $H \in \mathcal{H}$.

Theorem 49 A strongly developable space is paracompact.

Theorem 50 A strongly developable space is metrizable.

Definition 32 $H \subset X$ is a retract of X if there is a continuous function $r : X \to H$ such that r(x) = x for all $x \in H$.

Theorem 51 A retract of X is closed.

Lemma: If X is normal and I is a homeomorphic image of [0,1] lying in X, then I is a retract of X.

Theorem 52 If K is a homeomorphic copy of $[0,1]^n$ lying in the normal space X, then K is a retract of X.

Definiton A 1 Given that $f, g: [0,1] \to X$ are continuous functions such that $f(0) = f(1) = p_0 = g(0) = g(1)$ then $f \sim g$ means that there is a continuous function $F: [0,1] \times [0,1] \to X$ such that F(x,0) = f(x) and F(x,1) = g(x) and $F(0,x) = F(1,x) = p_0$.

Theorem A 1 $f \sim g$ is an equivalence relation.

Definiton A 2 $[f \oplus g] = [f] \oplus [g]$ where $f \oplus g = \begin{cases} f(2x) & 0 \le x \le 1/2 \\ g(2x-1) & 1/2 \le x \le 1 \end{cases}$

Theorem A 2 $[f] \oplus [id] = [f]$.

Question A 1 $[f \oplus g] = [g \oplus f]$?

Question A 2 What does [-f] equal?

Theorem A 3 Show that $[f] \oplus [g] = [f \oplus g]$ is well-defined.

Theorem A 4 If $f \sim -f$ then $f \sim id$.

Theorem A 5 The operation \oplus is associative.

Theorem A 6 $[f] \oplus [-f] = [id]$ and $[-f] \oplus [f] = [id]$.

Theorem A 7 If H is a retract of Y and $x_0 \in H$ then $H_1(X, x_0)$ is epimorphic to $H_1(H, x_0)$.

Theorem A 8 $H_1(X, x_0) \oplus H_1(Y, y_0)$ is isomorphic to $H_1(X \times Y, (x_0, y_0))$.