STAT 7600/7610 Mathematics Statistics Preliminary Exam, August 15, 2014

Statistics Group, Department of Mathematics and Statistics, Auburn University

Name: \qquad

1. It is a closed-book in-class exam.
2. Calculator is allowed.
3. Show your work to receive full credits. Highlight your final answer.
4. Solve any five problems out of seven.
5. Total points are $\mathbf{5 0}$ with $\mathbf{1 0}$ points for each problem.
6. Time: 180 minutes. (8:00am - 11:00am, August 15th, 2014)

1	2	3	4	5	6	7	Total

1. Find the $1-\alpha$ confidence set for a that is obtained by inverting the LRT of $H_{0}: a=a_{0}$ vs $H_{0}: a \neq a_{0}$ based on a sample X_{1}, \ldots, X_{n} from a $N(\theta, a \theta)$ family, where θ is unknown.
2. Let X_{1}, \ldots, X_{n} be an iid sample from $N\left(\mu_{x}, \sigma_{x}^{2}\right)$ and Y_{1}, \ldots, Y_{m} be an iid sample from $N\left(\mu_{y}, \sigma_{y}^{2}\right)$. Assume X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} are independent. Assume all parameters $\mu_{x}, \mu_{y} \in$ $R, \sigma_{x}, \sigma_{y} \in(0,+\infty)$ are unknown and $n>1$ and $m>1$.
(a) Find the UMVUE of $\mu_{x}-\mu_{y}$.
(b) If $\sigma_{x}=\sigma_{y}=\sigma$, find the UMVUE of $\mu_{x}-\mu_{y}$ and σ, and determine if the UMVUE of σ achieves the CR lower bound.
3. Let X be one observation from a pdf f on $(0,+\infty), 0<\alpha<1$ and let $f_{1}(x)=e^{-x}$, $f_{2}(x)=x e^{-x}, x>0$. To test $H_{0}: f=f_{1}$ vs $H_{0}: f=f_{2}$ based on X, find an uniformly most powerful (UMP) test statistic T and compute its power.
4. Let X_{1}, \ldots, X_{n} be an iid sample from $N\left(\mu, \sigma^{2}\right)$ distribution where $\mu \in R, \sigma \in(0,+\infty)$. Consider the estimation of σ^{2} with the squared error loss. Show that $\frac{n-1}{n} S^{2}$ is better than S^{2}, the sample variance. Find an estimator of the form $c S^{2}$ with a constant c such that it is better than $\frac{n-1}{n} S^{2}$?
5. Let X_{1}, \ldots, X_{n} be iid random variables having the uniform distribution on the interval (a, b), where $-\infty<a<b<\infty$. Show that $\left(X_{(i)}-X_{(1)}\right) /\left(X_{(n)}-X_{(1)}\right), i=2, \ldots, n-1$, are independent of $\left(X_{(1)}, X_{(n)}\right)$ for any a and b.
6. Suppose that X_{1}, \ldots, X_{n} are iid samples from $N\left(0, \sigma^{2}\right)$, with unknown parameter $\sigma \in$ $(0,+\infty)$. Find the asymptotic relative efficiency of $\sqrt{\pi / 2} \sum_{i=1}^{n}\left|X_{i}\right| / n$ with respect to $\left(\sum_{i=1}^{n} X_{i}^{2} / n\right)^{1 / 2}$.
7. Let X_{1}, \ldots, X_{n} be an iid sample from $N\left(\mu, \sigma^{2}\right)$ with an unknown μ and known σ^{2}. Suppose that the prior distribution on μ is $N\left(\theta, \tau^{2}\right)$ and θ and τ are known. Find the posterior distribution of $\mu, E\left(\mu \mid X_{1}, \ldots, X_{n}\right)$ and $\operatorname{Var}\left(\mu \mid X_{1}, \ldots, X_{n}\right)$.
