TOPOLOGY PRELIMINARY EXAMINATION Saturday, May 24, 1997

- 1. (3 pts each) Complete the following statements:
 - (a) The statement that the space X is completely regular (Tychonoff) means that _
 - (b) The statement that the space X is paracompact means that _____
 - (c) The statement that the set *H* is connected means that _____
 - (d) The statement that the set $A \subset B$ is a component of B means that _____
 - (e) The statement that the space X is Lindelöf means that _____
 - (f) The statement that the space X is separable means that _____
 - (g) The statement that the function $f: X \to Y$ is a quotient map means that _____
- 2. (10 pts each) Prove the following theorems:
 - (a) If X is separable and $f: X \to Y$ is continuous, then Y is separable.
 - (b) If X is a separable metric space, then X has a countable basis.
 - (c) If X is a paracompact Hausdorff space, then X is regular.
 - (d) If X is compact, then X is not the sum of countabley many nowhere dense subsets.
 - (e) If \mathcal{H} is a locally finite collection, then $\{cl(\mathcal{H})|\mathcal{H}\in\mathcal{H}\}$ is locally finite.
 - (f) If \mathcal{H} is a collection of connected sets with a point in common, then $\cup \mathcal{H}$ is connected.
- 3. (10 pts each) Prove or disprove any three of the following:
 - (a) A regular Lindelöf space is normal.
 - (b) The product of two Lindelöf spaces is Lindelöf.
 - (c) The product of a collection of compact spaces is compact.
 - (d) If X is compact and Y is paracompact, then $X \times Y$ is paracompact.
 - (e) A collecton of sets \mathcal{H} is monotonic if it is true that if H and K are in \mathcal{H} , then either $H \subset K$ or $K \subset H$. The common part of a monotonic collection of compact connected sets is connected.
 - (f) A quotient map is closed. (a continuous function is closed provided that the image of closed sets are closed.)
 - (g) The space X is compact if and only if every collection of closed subsets with the finite intersection property has a common part.