I. Definitions. Define each of the following notions:

1. neighborhood of a point
2. Hausdorff space
3. metric
4. first countable space
5. second countable space
6. compact space
7. connected space
II. Problems: Do at least 7 of the 10 problems; 2 counts as 1 problem and 9 counts as 1 problem. X and Y stand for topological spaces (X, \mathcal{T}) and $\left(Y, \mathcal{T}^{\prime}\right)$, respectively.
8. Suppose M and N are subsets of X. Prove that if M contains all of its limit points and N contains all of its limit points, then $M \cup N$ contains all of its limit points.
9. (a) If A is a dense subset of X and U is open in X, then $\overline{(A \cap U)} \supset U$.
(b) If A is a dense locally compact subspace of a Hausdorff space X, then A is open in X.
10. Suppose that A is a connected subset of X. Show that if $A \subset B \subset \bar{A}$, then B is also connected.
11. Show that if $f: X \rightarrow Y$ is a continuous function and $A \subset X$, then $f(\bar{A}) \subset \overline{f(A)}$.
12. Prove that the continuous image of a compact space is compact.
13. Suppose that $X_{1} \supset X_{2} \supset X_{3} \supset \cdots$ is a nested sequence of continua in X. Show that their intersection is connected.
14. If A is a compact subspace of X, B is a compact subspace of Y, and U is an open subset of $X \times Y$ containing $A \times B$, then there exist open subsets V, W of X, Y respectively, such that $A \subset V, B \subset W$, and $V \times W \subset U$.
15. If X is a normal space, and $A_{1}, A_{2}, \ldots, A_{n}$ is a finite sequence of closed subsets of X such that $\bigcap_{j=1}^{n} A_{j}=\emptyset$, then there exist open subsets $U_{1}, U_{2}, \ldots, U_{n}$, such that $A_{j} \subset U_{j}$ for $j=1,2, \ldots, n$ and $\bigcap_{j=1}^{n} U_{j}=\emptyset$.
16. Let X be the interval $(0,1)$ with the usual topology.
(a) Prove that every open set in X is the union of countably many open intervals.
(b) Give an example of an open set in X that is not the union of finitely many open intervals.
17. Prove that the interval $[0,1]$ (with the usual topology) and the set

$$
W=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x \leq 1, y=\sin \frac{1}{x}\right\} \cup\left\{(x, y) \in \mathbb{R}^{2} \mid x=0,-1 \leq y \leq 1\right\}
$$

are not homeomorphic.

