TOPOLOGY PRELIMINARY EXAM Aug. 7, 2012

Solve any 10 of the following problems. **Note:** problems marked with an asterisk (*) are somewhat more challenging, therefore each of them counts as two.

1. Let X be an uncountable set and let

 $\mathcal{T} = \{ U \subset X | \quad U = \emptyset \text{ or } X \setminus U \text{ is at most countable} \}.$

- (a) Verify that \mathcal{T} satisfies the axioms of topology;
- (b) Show that X, \mathcal{T} satisfies the T_1 -axiom, but is not a Hausdorff space.
- 2. Let X denote the topological space defined in Problem 1 above. Prove that every bijection $f: X \to X$ is a homeomorphism.
- 3. Define the *product topology* on the set $X \times Y$, where each of X and Y is a topological space, and verify that the axioms are satisfied.
- 4. Prove that X is a Hausdorff space if and only if the diagonal $D = \{(x, x) \in X \times X\}$ is closed in $X \times X$.
- 5. Define *metric space* and the topology induced by the metric. Prove that every metric space X is normal, that is, for each pair of disjoint closed subsets A and B there exist disjoint open subsets containing A and B, respectively.
- 6. Define *connected space* and prove that if X is connected and $f: X \to Y$ is a continuous surjection, then Y is connected.
- 7. (*) Prove that the subset of \mathbb{R}^2 consisting of points with either both coordinates rational or with both coordinates irrational is connected.
- 8. Define *compact space* and prove that if X is compact and $f : X \to Y$ is a continuous surjection, then Y is compact.
- 9. Sketch the proof of connectedness of the product of two connected spaces.
- 10. Assuming compactness of the closed interval, prove that a subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

- 11. Define *locally connected* space and prove that if X is locally connected, then every connected component of X is open.
- 12. (*) Give an example of a metric on the set \mathbb{R}^2 under which the resulting space is connected, but not locally connected.
- 13. Describe an example of a continuous surjection from the unit interval [0, 1] onto the square $[0, 1] \times [0, 1]$ (that is, a square-filling Peano curve).
- 14. (*) Based on the existence of a square-filling Peano curve (as in Problem 13 above), prove that there exists a continuous surjection from the real line \mathbb{R} onto the plane \mathbb{R}^2 .
- 15. (*) Recall that a space X has the fixed-point property means that every continuous function $f: X \to X$ has a fixed point, that is, there is a point $x_0 \in X$ with $f(x_0) = x_0$. Prove or disprove the following statement: Suppose X is the union of two of its closed subspaces X_1 and X_2 that have exactly one common point, and that each of these subspaces has the fixed-point property. Then X has the fixed-point property.