## Design Theory Prelim - 2004

1. Prove that a commutative idempotent latin square (quasigroup) of order $n$ exists if and only if n is an odd integer.
2. Prove that there are at least 5 MOLS(102) (or equivalently an Orthogonal array OA(102,7)). Describe what ingredients you would use, and state how you know the ingredients exist.
3. Let G be an edge-colored copy of $\mathrm{K}_{4}$ in which the edges colored 1 induce a copy of $\mathrm{K}_{3}$ and the remaining edges are colored 2. A G-decomposition of $2 \mathrm{~K}_{\mathrm{n}}$ is a collection $C$ of copies of $G$ such that each pair of vertices in $K_{n}$ is joined by an edge colored 1 in exactly one copy of $G$ in $C$, and each pair of vertices in $K_{n}$ is joined by an edge colored 2 in exactly one copy of $G$ in $C$.
a. Find a G-decomposition of $\mathrm{K}_{7}$.
b. Find a necessary condition for the existence of a G-decomposition of $K_{n}$ that is sufficiently general that it shows that there is no G-decomposition of $\mathrm{K}_{257}$.
4. a. Construct a projective plane of order 4.
b. Does this contain an affine plane? Why or why not?
5. Show that:
a. The number of idempotent MOLS(n) is at most $\mathrm{n}-2$.
b. If there exist $\mathrm{k} \operatorname{MOLS}(\mathrm{n})$ then there exist $\mathrm{k}-1$ idempotent MOLS(n).
