Design Theory Prelim January 15, 2007

1. A 4-cycle system of order n is a partition of the edges of K_{n}, each element of which induces a 4-cycle.
a. Show that a necessary condition for the existence of a 4-cycle system of order n is that $n \equiv 1(\bmod 8)$.
b. Find a cyclic 4 -cycle system of order 17 using difference methods.
c. A 4-cycle system is said to be nearly-resolvable if the set of 4-cycles can be partitioned into sets, called near parallel classes, each of which contains ($n-1$)/4 vertex-disjoint cycles.
i. How many near parallel classes would a nearly-resolvable 4-cycle system of order n contain?
ii. What does this tell you about the existence of nearly resolvable 4cycle systems?
2. Suppose that $\left(\mathrm{S}_{1}, \mathrm{~T}_{1}\right)$ and $\left(\mathrm{S}_{2}, \mathrm{~T}_{2}\right)$ are Steiner Triple Systems with S_{1} a proper subset of S_{2} and T_{1} a subset of T_{2}.
a. Show that $\left|\mathrm{S}_{2}\right| \geq 2\left|\mathrm{~S}_{1}\right|+1$. (Hint: Consider all the triples containing a point in S_{2} / S_{1}.)
b. Describe the triples in T_{2} / T_{1} that contain the point p in S_{1}.
c. Find a $\operatorname{STS}(15)$ that contains a $\operatorname{STS}(7)$ (Hint: (2b) should help).
3. Let L_{1}, \ldots, L_{x} be a complete set of latin squares of order n constructed using the finite field construction.
a. What is the value of x ?
b. Which, if any, of these latin squares is unipotent (all diagonal cells contain the same symbol)? Why?
c. How many of these latin squares have each of the n symbols appear in a diagonal cell? Why?
d. Suppose L_{1}, \ldots, L_{x} were constructed by defining addition and multiplication modulo n instead of using a finite field. If $n=8$,
i. Which of them would be latin squares? Why?
ii. Would any pair be orthogonal latin squares? Why?
4. Generalize the construction for a KTS using PBDs to obtain a resolvable $\operatorname{BIBD}(v=76, k=4)$ as follows.
a. Describe how to construct an affine plane of order 4 (that is, a resolvable $\operatorname{BIBD}(16,4))$.
b. What would change in this construction in order to make an affine plane of order 5 ? (In (4c), think of this as a $\operatorname{PBD}(25)$ with all blocks of size 5 .)
c. Describe how you can use these two ingredients to construct a resolvable $\operatorname{BIBD}(76,4)$ on the vertex set $\{\infty\} \cup(\{1, \ldots, 25\} \times\{1,2,3\})$. Be sure to describe both the blocks and the parallel classes.
