Graph Theory Prelim - 2005

1. Let G be a simple graph. In each of the following cases, find the number of spanning trees G has (some parts may have more than one answer - if so, discuss each possibility):
a. G contains exactly two cycles, one of length x and one of length y.
b. G contains an edge whose removal leaves a graph with 2 components, one having i spanning trees, the other having j spanning trees.
2. Let G be a simple graph. Find necessary and sufficient conditions for G to have a (not necessarily proper) 2-edge-coloring such that each vertex is incident with at least one edge of each color. Prove your answer is true. (Hint: There are several ways to approach this, but it may help to add a vertex to G and join it to each vertex of odd degree in G.)
3. All graphs in the following are simple.
a. State Hall's Theorem, preferably as a theorem about matchings in bipartite graphs.
b. Suppose that G is a bipartite graph with bipartition $\{\mathrm{X}, \mathrm{Y}\}$ of the vertex set. Suppose that every vertex in X has degree d_{1}, and every vertex in Y has degree d_{2}. Suppose that $0<d_{2} \leq d_{1}$. Prove that there is a matching in G which saturates X.
c. Prove that every regular bipartite graph has edge-chromatic number equal to its degree.
4. Let G be a finite simple graph with n vertices. The coloring number of G is the smallest integer k for which there exists an ordering $v(1), \ldots, v(n)$ of the vertices of G such for each $i, v(i)$ is adjacent to at most $k-1$ of the vertices $v(j)$ with $j<i$.
a. Show that the chromatic number of G is no greater than the coloring number of G .
b. Give an example of a finite simple graph in which the coloring number and the chromatic number are equal, and an example in which they are not equal.
5. Let G be a finite simple graph G with minimum degree $\delta(\mathrm{G}) \geq 2$.
a. Show that G contains a set of $\delta(\mathrm{G})-1$ cycles of different lengths. [Hint: think of a vertex at an end of a longest path in G.]
b. Suppose that G contains a maximal path of length exactly $2 \delta(G)-1$. Show that G must contain a cycle of length $2 \delta(G)$.
