Graph Theory Prelim 2008

1) Let G be a bipartite graph with bipartition (A, B), and at least one edge.
a) State Hall's theorem on matchings saturating A.
b) Suppose (for this part b only) that for all $a \varepsilon A, b \in B$, that $1 \leq \operatorname{deg}(b) \leq \operatorname{deg}(a)$. Prove that G has a matching saturating A.
c) State König's theorem on the chromatic index (edge chromatic number) of G .
d) Prove that G has a matching saturating all its vertices of maximum degree.
2) Let G be a simple graph with minimum degree $\delta \geq 2$.
a) Prove that G contains cycles of at least $\delta-1$ different lengths. (Hint - consider a longest path.)
b) Prove that G contains a cycle of length at least $\delta+1$.
c) Prove that G contains a path of length exactly δ.
d) For each $\delta \geq 2$, find an example of such a connected G with no paths of length $\delta+1$.
e) Prove or disprove: your example in part d is unique (up to isomorphism).
3) A kernel of a directed graph D is a set of independent vertices K such that for each vertex z in $V(D) \backslash K$, there exists an arc directed from z to a vertex in K. The kernel number $K(D)$ is the size of a smallest kernel in D, if D has a kernel. (If D has no kernel, define $K(D)$ to be ${ }^{\infty}$.) For an undirected graph G, the kernel number $K(G)$ is the size of a smallest kernel among all orientations of G (an orientation of G is formed by replacing each edge of G with an arc).
a) Find a directed graph $D=(V, A)$ on 5 vertices, with a kernel K of size 3 , and with V / K is another kernel.
b) Show that if K is a kernel of a directed graph D, then K is a maximal independent set in D.
c) Let $i(G)$ be the size of a smallest maximal independent set in the G. Show that $i(G)=K(G)$ (Hint: Show that $i(\mathrm{G}) \leq K(G)$, and show that $i(G) \geq K(G)$.)
