Graph Theory Prelim – 2011

- 1. Recall that a set S of vertices of a graph G is *independent* if no edge of G has both of its ends in S.
 - a. Find a loopless graph on 50 vertices and 392 edges having no independent set of size 4.
 - b. Prove that every loopless graph on 50 vertices and 391 edges has an independent set of size 4.

(Hint: every simple graph has a complement.)

2. A vertex coloring of a finite simple graph G is said to be *greedy* if it is a coloring with the positive integers arising from an ordering $v_1, ..., v_n$ of the vertices in V(G) by following the rule:

 v_1 is colored 1; then, for each j > 1 (assuming all v_i have been colored for i < j) v_j is colored with the smallest positive integer that is not the color of a neighbor of v_j among $v_1, ..., v_{j-1}$.

- If *f* is a coloring of V(G) with positive integers then let $k(f) = \max_{v \text{ in } V(G)} \{f(v)\}$. Let $C_j = f^{-1}(\{j\})$ for $1 \le j \le k(f)$.
 - a. Show that if *f* is a greedy coloring then $k(f) \le \Delta(G) + 1$.
 - b. Show that *f* is a greedy coloring of G if and only if
 - i. C_i is an independent set of vertices, and
 - ii. For j > 1, each vertex in C_j has a neighbor in C_i for $1 \le i < j$.
 - c. Show that each finite simple graph G has a greedy coloring f such that $k(f) = \chi(G)$.
- 3. Let k be a positive integer, and let $V = \{0, 1, 2, ..., 2k\}$, and define a function d on V by

$$d(i) = i+1$$
 if $i < k$, and $d(i) = i$ if $i \ge k$.

Prove that there is exactly one simple graph on vertex set V and degree function d. Find the graph when k = 4.

- 4. Hall's Theorem can be stated in various ways. Here are two.
 - a. Let A_1, \ldots, A_n be finite sets. There exist elements a_1, \ldots, a_n such that
 - i. a_i is in A_i for $1 \le i \le n$, and
 - ii. a_1, \ldots, a_n are distinct (no two are equal)

if and only if each subset J of $\{1, ..., n\}$ satisfies $|U_{j \text{ in J}} A_j| \ge |J|$.

b. If B is a finite bipartite graph with bipartition $\{X,Y\}$ of the vertex set, then there is a matching in B saturating the vertices in X if and only if each subset S of X satisfies $|S| \le |N_B(S)|$.

Prove that the second version of Hall's Theorem follows from the first.

Hall noticed that the first version could be strengthened as follows.

c. Let $A_1, ..., A_n$ be finite sets and $k_1, ..., k_n$ be positive integers. There exist sets $B_1, ..., B_n$ such that

(1) B_i is a subset of A_i for $1 \le i \le n$, (2) $B_1, ..., B_n$ are pairwise disjoint, and (3) $|B_i| = k_i$ for $1 \le i \le n$

if and only if each subset J of $\{1, ..., n\}$ satisfies $|U_{j \text{ in J}} A_j| \ge \sum_{j \text{ in J}} k_j$.

Find an equivalent theorem to this strengthened result (4c) that is in terms of bipartite graphs in the same way that (4b) is equivalent to (4a).