Some Graph Theory Prelim Questions

1) If G is a simple graph with at least one edge, we define the line graph of G, denoted $L(G)$, as follows: the vertices of $L(G)$ are the edges of G, and two different vertices of $L(G)$ are adjacent if, as edges of G, they have exactly one vertex of G in common.
a) Find a formula for the number of edges of $L(G)$ in terms of the vertex degrees of G.
b) Show that if G has a vertex of degree at least d, then $L(G)$ contains a clique (= complete subgraph) on at least d vertices.
c) Show that if $d \geq 2$, and G has a vertex of degree at least d, then $L(L(G))$ has a vertex of degree at least $2 \mathrm{~d}-4$.
d) If G has a vertex of degree 4 , show that $L(L(L(G)))$ has a vertex of degree at least 6 .
2) Recall that an Euler tour in G is a closed walk that uses each edge of G exactly once.
a) State Euler's theorem on Euler tours.
b) Form the graph G^{+}by adding a new vertex to G adjacent to all the vertices of odd degree in G. Under what conditions does G^{+}have an Euler tour?
c) Prove (possibly by using a) and b) above) that G has an orientation so that for every vertex v, the indegree of v and the outdegree of v differ by at most one.
3) A 2-edge-coloring of the edges of the graph G with the two colors orange and blue is defined to be balanced if for each vertex v , the number of orange edges incident with v and the number of blue edges incident with v differ by at most one.
A connected graph is defined to be evil if it has an odd number of edges, and all of its vertices have even degree.
a) Prove that an evil graph has no balanced 2-edge-coloring.
b) Prove that G has a balanced 2-edge-coloring if and only if G has no evil component. (Hint: maybe 2) a) and b) above might help.)
4) a) State Hall's theorem on matchings in bipartite graphs.
b) Let G be a bipartite graph with bipartition (A, B). Suppose that for some positive integer k , each vertex in A has degree at least k , and each vertex in B has degree at most k. Show that G has a matching saturating A.
