Mathematical Statistics Preliminary Examination

Statistics Group
Department of Mathematics and Statistics
Auburn University, AL 36849

June 15, 2005

Time : Wednesday, June 15, 10:00 am - 1:00 pm.
I. Definitions : Define each of the following:

1. Almost sure convergence
2. Statistic
3. Sufficient statistic
4. Ancillary statistic
5. UMVUE (uniform minimum variance unbiased estimator of a parameter)
II. Problems : Work the first two and any five of the remaining eight problems.
6. State and prove the central limit theorem for i.i.d. random variables.
7. State and prove the Rao-Blackwell theorem.
8. Suppose X_{1}, X_{2}, \ldots be a sequence of independent random variables such that $E\left(X_{i}\right)=\mu_{i}$ and $\operatorname{Var}\left(X_{i}\right)=$ σ_{i}^{2} for $i=1,2, \ldots$. For $n \geq 1$, write $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $\bar{\mu}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mu_{i}$. Show that if

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} \sigma_{i}^{2}=0
$$

then

$$
\bar{X}_{n}-\bar{\mu}_{n} \xrightarrow{\mathcal{P}} 0 .
$$

4. Suppose X is a discrete random variable with

$$
P\{X=-1\}=p
$$

and

$$
P\{X=n\}=(1-p)^{2} p^{n}, \quad n=0,1,2, \ldots
$$

for some p with $0<p<1$. Then, for a sample of size one, show that X is minimal sufficient but not complete.
5. Suppose X has a Poisson distribution with mean $\lambda>0$. The probability mass function of X is given by

$$
p(x ; \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x=0,1,2, \ldots
$$

Consider estimating the parameter $q(\lambda)=e^{-3 \lambda}$ based on a sample of size one using the statistic $T(X)=$ $(-2)^{X}$. Show that T is an unbiased estimator for $e^{-3 \lambda}$. Argue, however, that the use of T as an estimator of $e^{-3 \lambda}$ is absurd.
6. Let X_{1}, \ldots, X_{n} be a random sample from the uniform distribution on $(0, \theta)$ for some $\theta>0$. Show that both $2 \bar{X}$ and $[(n+1) / n] X_{(n)}$, where $X_{(n)}=\max \left(X_{1}, \ldots, X_{n}\right)$, are both unbiased estimators of θ. Which of the two estimators is "better" (i.e. smaller variance)?
7. Prove : Let $X_{(1)} \leq \ldots \leq X_{(n)}$ denote the order statistics of a random sample X_{1}, \ldots, X_{n} from a continuous population with $\operatorname{cdf} F(x)$ and pdf $f(x)$. Then, for $1 \leq j \leq n$ the pdf of the j th order statistic $X_{(j)}$ is

$$
f_{X_{(j)}}(x)=\frac{n!}{(j-1)!(n-j)!} f(x)[F(x)]^{j-1}[1-F(x)]^{n-j}
$$

8. Let X be a random variable such that

$$
E\left[X^{2 m}\right]=\frac{(2 m)!}{2^{m} m!}, m=1,2,3, \ldots
$$

and

$$
E\left[X^{2 m-1}\right]=0, m=1,2,3, \ldots
$$

Find the mgf and pdf of X.
9. Let X_{1}, X_{2}, X_{3} be independent and identically distributed random variables with a common pdf

$$
f(x)= \begin{cases}e^{-x}, & 0<x<\infty \\ 0, & \text { elsewhere }\end{cases}
$$

Consider the random variables Y_{1}, Y_{2}, Y_{3} defined by

$$
Y_{1}=\frac{X_{1}}{X_{1}+X_{2}+X_{3}}, \quad Y_{2}=\frac{X_{2}}{X_{1}+X_{2}+X_{3}}, \quad Y_{3}=X_{1}+X_{2}+X_{3}
$$

Derive the joint and marginal pdf's of Y_{1}, Y_{2}, Y_{3}. Are Y_{1}, Y_{2}, Y_{3} independent? If not, identify the dependent pairs.
10. Let X_{1}, \ldots, X_{n} be a random sample from a distribution with pdf

$$
f(x)= \begin{cases}e^{-(x-\theta)} & x>\theta,-\infty<\theta<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

Obtain an unbiased, consistent estimator of θ.

