Mathematical Statistics Preliminary Examination

Statistics Group Department of Mathematics and Statistics Auburn University, AL 36849

June 21, 2006

Time : Wednesday, June 21, 9:30 am.

I. Definitions : Define each of the following:

- 1. Likelihood ratio test
- 2. Pivotal quantity
- 3. Power function of a test
- 4. Unbiased confidence set
- 5. Asymptotic variance

II. Problems : Solve any five of the eight problems below.

1. Suppose X_1, \ldots, X_n are independent and identically distributed as Gamma distribution with pdf

$$f(x;\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp\left(-\frac{x}{\beta}\right) I_{(0,\infty)}(x) ,$$

where $\alpha > 0$ is known and $\beta > 0$ is unknown.

- (a) Derive the maximum likelihood estimator, $\hat{\beta}$, of β .
- (b) Identify the exact distribution of the MLE $\hat{\beta}$.
- (c) Prove that as n goes to infinity, $\sqrt{n}(\hat{\beta} \beta)$ follows a normal distribution.
- (d) Verify that the variance in the above asymptotic distribution can also be obtained by calculating the Fisher information.
- (e) Derive the likelihood ratio test statistic for testing $H_0: \beta = \beta_0$.
- 2. Suppose X_1, \ldots, X_n are iid random variables from a distribution with density

$$f(x; a, b) = \frac{1}{b} \exp\left(-\frac{x-a}{b}\right) I_{(a,\infty)}(x) ,$$

where a is unknown and b is known.

- (a) Show that $X_{(1)} = \min\{X_1, \ldots, X_n\}$ is sufficient for a and complete.
- (b) Identify the asymptotic distribution of $X_{(1)}$.
- (c) Show that the UMVUE of a is $X_{(1)} (b/n)$.

3. Suppose X_1, \ldots, X_n are iid from a distribution with density

$$f(x;\lambda) = \lambda \exp(-\lambda x) I_{(0,\infty)}(x)$$
,

where $\lambda > 0$.

- (a) Calculate $E[X_1]$ and find its UMVUE.
- (b) Find the UMVUE of λ^{-2} . Does its variance attain the Cramér-Rao lower bound?
- 4. Let X_1, \ldots, X_n be iid $N(\mu, 1)$. Suppose we want to estimate the probability that $X_1 > 0$, i.e. the function

$$1 - \Phi(-\mu) = \int_0^\infty \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\mu)^2\right) \, dx \, .$$

- (a) Show that $X_1 X_2$ and $X_1 \overline{X}$ are independent of \overline{X} .
- (b) Give an unbiased estimator of $1 \Phi(-\mu)$.
- (c) Find the UMVUE of $1 \Phi(-\mu)$.
- (d) Find the MLE of $1 \Phi(-\mu)$.
- 5. Let X have the pdf f(x) where f is strictly decreasing on $[0, \infty)$. Prove that for a fixed value of α , of all intervals [a, b] that satisfy $\int_a^b f(x) dx = 1 \alpha$, the shortest interval is obtained by choosing a = 0 and b so that $\int_0^b f(x) dx = 1 \alpha$.
- 6. Suppose X_1, \ldots, X_n is a random sample from the density

$$f(x;\theta) = \theta(\theta+1)x^{\theta-1}(1-x)I_{(0,1)}(x) ,$$

where $\theta > 0$. Show that the method of moments estimator is inefficient.

- 7. Let X be a sample of size one from the Bernoulli(p) distribution. Show that X is the UMVUE of p. Show, however, that not even an unbiased estimator exists for the odds ratio p/(1-p).
- 8. Let X_1, \ldots, X_n be a random sample from the uniform $(0, \theta)$ distribution, $\theta > 0$. Let Y be the largest order statistic. Prove that Y/θ is a pivotal quantity and show that the interval

$$\left\{\theta: y \le \theta \le \frac{y}{\alpha^{1/n}}\right\}$$

is the shortest $1 - \alpha$ pivotal interval.