Mathematical Statistics Preliminary Examination

Statistics Group
Department of Mathematics and Statistics
Auburn University, AL 36849

June 21, 2006

Time : Wednesday, June 21, 9:30 am.
I. Definitions : Define each of the following:

1. Likelihood ratio test
2. Pivotal quantity
3. Power function of a test
4. Unbiased confidence set
5. Asymptotic variance
II. Problems : Solve any five of the eight problems below.
6. Suppose X_{1}, \ldots, X_{n} are independent and identically distributed as Gamma distribution with pdf

$$
f(x ; \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \exp \left(-\frac{x}{\beta}\right) I_{(0, \infty)}(x),
$$

where $\alpha>0$ is known and $\beta>0$ is unknown.
(a) Derive the maximum likelihood estimator, $\hat{\beta}$, of β.
(b) Identify the exact distribution of the MLE $\hat{\beta}$.
(c) Prove that as n goes to infinity, $\sqrt{n}(\hat{\beta}-\beta)$ follows a normal distribution.
(d) Verify that the variance in the above asymptotic distribution can also be obtained by calculating the Fisher information.
(e) Derive the likelihood ratio test statistic for testing $H_{0}: \beta=\beta_{0}$.
2. Suppose X_{1}, \ldots, X_{n} are iid random variables from a distribution with density

$$
f(x ; a, b)=\frac{1}{b} \exp \left(-\frac{x-a}{b}\right) I_{(a, \infty)}(x),
$$

where a is unknown and b is known.
(a) Show that $X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ is sufficient for a and complete.
(b) Identify the asymptotic distribution of $X_{(1)}$.
(c) Show that the UMVUE of a is $X_{(1)}-(b / n)$.
3. Suppose X_{1}, \ldots, X_{n} are iid from a distribution with density

$$
f(x ; \lambda)=\lambda \exp (-\lambda x) I_{(0, \infty)}(x),
$$

where $\lambda>0$.
(a) Calculate $E\left[X_{1}\right]$ and find its UMVUE.
(b) Find the UMVUE of λ^{-2}. Does its variance attain the Cramér-Rao lower bound?
4. Let X_{1}, \ldots, X_{n} be iid $N(\mu, 1)$. Suppose we want to estimate the probability that $X_{1}>0$, i.e. the function

$$
1-\Phi(-\mu)=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\mu)^{2}\right) d x
$$

(a) Show that $X_{1}-X_{2}$ and $X_{1}-\bar{X}$ are independent of \bar{X}.
(b) Give an unbiased estimator of $1-\Phi(-\mu)$.
(c) Find the UMVUE of $1-\Phi(-\mu)$.
(d) Find the MLE of $1-\Phi(-\mu)$.
5. Let X have the pdf $f(x)$ where f is strictly decreasing on $[0, \infty)$. Prove that for a fixed value of α, of all intervals $[a, b]$ that satisfy $\int_{a}^{b} f(x) d x=1-\alpha$, the shortest interval is obtained by choosing $a=0$ and b so that $\int_{0}^{b} f(x) d x=1-\alpha$.
6. Suppose X_{1}, \ldots, X_{n} is a random sample from the density

$$
f(x ; \theta)=\theta(\theta+1) x^{\theta-1}(1-x) I_{(0,1)}(x),
$$

where $\theta>0$. Show that the method of moments estimator is inefficient.
7. Let X be a sample of size one from the $\operatorname{Bernoulli}(p)$ distribution. Show that X is the UMVUE of p. Show, however, that not even an unbiased estimator exists for the odds ratio $p /(1-p)$.
8. Let X_{1}, \ldots, X_{n} be a random sample from the uniform $(0, \theta)$ distribution, $\theta>0$. Let Y be the largest order statistic. Prove that Y / θ is a pivotal quantity and show that the interval

$$
\left\{\theta: y \leq \theta \leq \frac{y}{\alpha^{1 / n}}\right\}
$$

is the shortest $1-\alpha$ pivotal interval.

