Mathematical Statistics Preliminary Examination

Statistics Group, Department of Mathematics and Statistics, Auburn University

Name: _____

- 1. It is a closed-book and in-class exam.
- 2. One page (letter size, 8.5-by-11in) cheat sheet is allowed.
- 3. Calculator is allowed. No laptop (or equivalent).
- 4. Show your work to receive full credits. *Highlight your final answer*.
- 5. Solve any **five** problems out of the seven problems.
- 6. Total points are **50**. Each question is worth **10** points.
- 7. If you work out more than five problems, your score is the sum of five highest points.
- 8. Time: 150 minutes. (9:00am-11:30am, Friday, August 03, 2007)

1	2	3	4	5	6	7	Total

- 1. Suppose that X_1, \ldots, X_n are independent random variables, and $X_i \sim N(\theta_i, \sigma^2)$, $i = 1, \ldots, n$, where σ^2 is a known constant. We are interested in the hypothesis $H_0: \theta_1 = \cdots = \theta_n = 0$.
 - (a) Find a size α UMP test for

$$H_0: \theta_1 = \cdots = \theta_n = 0$$
, versus $H_a: \theta_i = \theta_{i0}, i = 1, \dots, n$.

where $\theta_{10}, \ldots, \theta_{n0}$ are given constants. (identify test statistic and reject region)

- (b) Find the likelihood ratio test. (identify test statistic and reject region)
- (c) Calculate the powers of the tests in (a) and (b) when the alternative hypothesis is $H_a: \theta_i = n^{-1/3}, i = 1, ..., n$, and compare them as $n \to \infty$.
- 2. Suppose (Y, X) are uniform on the area bounded by y = ax, y = ax + b, x = 0 and x = c. Suppose $(Y_1, X_1), \ldots, (Y_n, X_n)$ is an iid sample from (Y, X). Find the MLEs of a, b, and c.

- 3. A commuter leaves for work between 6 A.M. and 7 A.M., and takes between 1 to 2 hours to get there. Let the random variable X denote her time of departure, and the random variable Y the travel time. Assume that these variables are independent and uniformly distributed and let Z = X + Y be the time of arrival at work.
 - (a) Find the probability that the commuter arrives at work before 8 A.M.
 - (b) Find the probability that the commuter arrives at work before 8 A.M. knowing that she has left home after 6:30 A.M. in a particular morning.
 - (c) Find the density of Z, and find the conditional density of X given Z = 8.5.
- 4. Suppose that X_1, \ldots, X_n are iid random variables with pdf

$$f(x|\theta) = \theta x^{\theta-1}, \quad 0 < x < 1, \quad \theta > 0.$$

- (a) Obtain the Cramér-Rao lower bound on the variance of unbiased estimators of θ .
- (b) Obtain a moment estimator θ .
- (c) Investigate the limiting distribution of $\sqrt{n}(\hat{\theta} \theta)$, where $\hat{\theta}$ is the estimator found in part (b). Is it asymptotically efficient?

5. Let X_1, \ldots, X_n be a random sample from a distribution having density

$$f(x|\theta,\mu) = \frac{1}{\theta} e^{-\frac{x-\mu}{\theta}} I_{[\mu,\infty)}(x), \quad \theta > 0, \quad -\infty < \mu < \infty.$$

- (a) If both θ and μ are unknown parameters, show that a level α likelihood ratio test of $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ has rejection region of the form $\sum_{i=1}^n (X_i X_{(1)}) < C_1$ or $\sum_{i=1}^n (X_i X_{(1)}) > C_2$, where $X_{(1)}$ is the smallest of the X_i 's.
- (b) Now suppose that μ is known to be 0. A level α likelihood ratio test of $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ has rejection region of the form $\sum_{i=1}^n X_i < C_1$ or $\sum_{i=1}^n X_i > C_2$. Determine explicitly values of C_1 and C_2 which yield a test of level α . Are these values unique?
- (c) Again assuming $\mu = 0$, derive a 1α confidence interval for θ by inverting the test in (b).
- 6. Consider the family of probability density functions $\{h(z;\theta): \theta \in \Theta\}$, where $h(z;\theta) = \frac{1}{\theta}I_{(0,\theta)}(z)$.
 - (a) Show that the family is complete provided that $\Theta = (0, \infty)$.
 - (b) Show that the family is not complete if $\Theta = (1, \infty)$.
- 7. Suppose X_1, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$. Let \tilde{X} be the sample median and \bar{X} be the sample mean of the random sample. Show that

$$var[\tilde{X}] = var[\tilde{X} - \bar{X}] + \sigma^2/n.$$