# Mathematical Statistics Preliminary Examination 

Statistics Group, Department of Mathematics and Statistics, Auburn University

Name: $\qquad$

1. It is a closed-book and in-class exam.
2. One page (letter size, 8.5 -by-11in) cheat sheet is allowed.
3. Calculator is allowed. No laptop (or equivalent).
4. Show your work to receive full credits. Highlight your final answer.
5. Solve any five problems out of the seven problems.
6. Total points are $\mathbf{5 0}$. Each question is worth $\mathbf{1 0}$ points.
7. If you work out more than five problems, your score is the sum of five highest points.
8. Time: 150 minutes. (9:00am-11:30am, Thursday, August 14, 2008)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Notation:

$$
\binom{X}{Y} \sim N\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{cc}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right)\right) .
$$

means $X$ and $Y$ jointly follow a bivariate normal distribution such that

$$
E(X)=\mu_{x}, E(Y)=\mu_{y}, \operatorname{var}(X)=\sigma_{x}^{2}, \operatorname{var}(Y)=\sigma_{y}^{2}, \operatorname{cov}(X, Y)=\rho \sigma_{x} \sigma_{y}
$$

1. Let $Z=X_{2} \mid\left(X_{1}>0\right)$, where

$$
\binom{X_{1}}{X_{2}} \sim N\left(\binom{0}{0},\left(\begin{array}{cc}
1 & \rho \\
\rho & \sigma^{2}
\end{array}\right)\right) .
$$

Find the pdf of $Z$.
2. The joint distribution of $Y$ and $X$ is given by the following hierarchical model

$$
Y \mid X \sim \operatorname{Possion}(X), \quad X \sim \operatorname{Gamma}(\alpha, \beta)
$$

Calculate $E(X \mid Y)$.
3. (a) Let $X$ be a $\operatorname{Gamma}(\alpha, \beta)$ random variable with density function

$$
f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}, \quad x>0 ; \alpha, \beta>0 .
$$

Find the density of $Y=e^{-X}$.
(b) Let $X_{1}, \ldots, X_{n}$ be an iid random sample from uniform $(0,1)$. Find the density of $Y=X_{1} X_{2} \cdots X_{n}=\prod_{i=1}^{n} X_{i}$.
4. Let $X_{1}, \ldots, X_{n}$ be a random sample from the following distribution:

$$
f(x \mid \theta)=\binom{2}{x} \theta^{x}(1-\theta)^{2-x} I_{\{0,1,2\}}(x)
$$

where the parameter space for the unknown $\theta$ is $\Theta=[0,1]$.
(a) Is there a one-dimensional sufficient statistic and if so, what is it? Does a complete sufficient statistic exist?
(b) Find a maximum likelihood estimator of $\theta^{2}=P\left(X_{1}=2\right)$. Is it unbiased?
(c) Find a uniformly minimum variance unbiased estimator of $\theta^{2}$ if such exists.
5. Let $\mathbf{X}$ be a random vector from an unknown distribution. According to the NeymanPearson Lemma, if $H_{0}$ is the simple null hypothesis that the joint density is $g(\mathbf{x})$ versus $H_{1}$ the simple alternative hypothesis that the joint density is $h(\mathbf{x})$, then $\mathcal{R}$ is the best critical region of size $\alpha$, if, for $k>0$ : (i) $\frac{g(\mathbf{x})}{h(\mathbf{x})} \leq k$ for $\mathbf{x} \in \mathcal{R}$, (ii) $\frac{g(\mathbf{x})}{h(\mathbf{x})} \geq k$ for $\mathbf{x} \in \mathcal{R}^{c}$, and (iii) $\alpha=P_{H_{0}}(\mathbf{X} \in \mathcal{R})$.
Now let $X_{1}, \ldots, X_{n}$ be a random sample from a distribution that has a probability mass function $f(x)$ that is positive only on the nonnegative integers. We wish to test the simple hypothesis

$$
H_{0}: f(x)= \begin{cases}\frac{e^{-1}}{x!}, & x=0,1,2, \ldots \\ 0, & \text { elsewhere }\end{cases}
$$

against the alternative simple hypothesis

$$
H_{1}: f(x)= \begin{cases}\left(\frac{1}{2}\right)^{x+1}, & x=0,1,2, \ldots \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Determine the best critical region $\mathcal{R}$ for the case $n=1$ and $k=1$.
(b) Compute the level of the test for the case $n=1$ and $k=1$.
(c) Compute the power of the test (when $H_{1}$ is true) for the case $n=1$ and $k=1$.
6. Let $X_{1}, \ldots, X_{n}$ be a random sample from the Laplace distribution with density

$$
f(x ; \theta)=\frac{1}{2} e^{-|x-\theta|}
$$

Suppose $n=2 k+1$ is odd. Find the maximum likelihood estimator and show that it does not satisfy the likelihood equation $\partial \log L(\theta) / \partial \theta=0$.
7. Suppose that $X_{1}, \ldots, X_{n}$ is an iid sample from a population with density $f(x ; \theta)$, where $\theta$ is a unknown parameter. $S_{1}$ and $S_{2}$ are two different unbiased estimators of $\theta$. It is known that the joint distribution of $S_{1}$ and $S_{2}$ is bivariate normal,

$$
\binom{S_{1}}{S_{2}} \sim N\left(\binom{\theta}{\theta}, \frac{1}{n}\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)\right) .
$$

We want to use $T(\lambda)=\lambda S_{1}+(1-\lambda) S_{2}$ for testing $H_{0}: \theta=0$ versus $H_{a}: \theta \neq 0$, where $\lambda$ is a constant. Consider the rejection region of the form $|T(\lambda)|>c$.
(a) Determine $c$ at significance level $\alpha$.
(b) Expression the power function $\beta(\theta)$ in terms of $\Phi$, where $\Phi(\cdot)$ is the cumulative distribution function of $N(0,1)$.
(c) Find $\lambda$ that maximizes $\beta(\theta)$ for any given $\theta$.

## Solutions

1. The cdf of $Z$ is

$$
\begin{aligned}
P(Z \leq z)=P\left(X_{2} \leq z \mid X_{1}>0\right) & =\frac{P\left(X_{2} \leq z, X_{1}>0\right)}{P\left(X_{1}>0\right)} \\
& =2 P\left(X_{2} \leq z, Y>-\left(\rho / \sigma^{2}\right) X_{2}\right) \\
& =2 \int_{-\infty}^{z} f_{X_{2}}(x) \int_{-\left(\rho / \sigma^{2}\right) x}^{\infty} f_{Y}(y) d y d x
\end{aligned}
$$

where $Y=X_{1}-\left(\rho / \sigma^{2}\right) X_{2} \sim N\left(0,1-\rho^{2} / \sigma^{2}\right)$ and $Y$ is independent of $X_{2}$. Thus,

$$
f_{Z}(z)=\frac{d}{d z} P(Z \leq z)=2 f_{X_{2}}(z) \int_{-\left(\rho / \sigma^{2}\right) z}^{\infty} f_{Y}(y) d y=\frac{2}{\sigma} \phi(z / \sigma) \Phi\left(\frac{-\left(\rho / \sigma^{2}\right) z}{\sqrt{1-\rho^{2} / \sigma^{2}}}\right)
$$

where $\phi(\cdot)$ is a standard normal density and $\Phi(\cdot)$ is a cdf of a standard normal rv.
2. The joint density of $(Y, X)$ is

$$
\begin{aligned}
f(y, x) & =f(y \mid x) f(x)=\frac{1}{y!} e^{-x} x^{y} \frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{x / \beta} \\
& =\frac{1}{\Gamma(\alpha) \beta^{\alpha} y!} e^{y+\alpha-1} e^{-(1+1 / \beta) x}, \quad x>0, y=0,1,2, \ldots
\end{aligned}
$$

The marginal density of $Y$ is

$$
\begin{aligned}
f(y) & =\int_{0}^{\infty} f(y, x) d x=\frac{\Gamma(y+\alpha)(1+1 / \beta)^{-(y+\alpha)}}{\Gamma(\alpha) \beta^{\alpha} y!} \\
& =\frac{\Gamma(y+\alpha)}{\Gamma(\alpha) y!} \frac{\beta^{y}}{(1+\beta)^{y+\alpha}}, \quad y=0,1,2, \ldots
\end{aligned}
$$

Therefore, the conditional density of $X \mid Y$ is

$$
f(x \mid y)=\frac{(1+1 / \beta)^{y+\alpha}}{\Gamma(y+\alpha)} x^{y+\alpha-1} e^{-(1+1 / \beta) x}, x>0
$$

It is a $\operatorname{Gamma}\left(y+\alpha,(1+1 / \beta)^{-1}\right)$ distribution and

$$
E(X \mid Y)=\frac{Y+\alpha}{1+1 / \beta}
$$

3. (a). It is easy to see that $X=-\log (Y)$. The density of $Y$ is

$$
f(y)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}}(-\log (Y))^{\alpha-1} y^{1 / \beta-1}, \quad 0<y<1 .
$$

When $\alpha=\beta=1, Y$ follows uniform $(0,1)$.
(b). Let $T=-\log (Y)=\sum_{i=1}^{n}\left\{-\log \left(X_{i}\right)\right\}$. Because $X_{i}$ follows uniform( 0 , 1), we know that $-\log \left(X_{i}\right)$ follows $\operatorname{Gamma}(1,1)$ and $T$ follows $\operatorname{Gamma}(n, 1)$. Applying the results in (a), the density of $Y=e^{-T}$ is

$$
f(y)=\frac{1}{\Gamma(n)}(-\log (y))^{n-1}=\frac{(-\log (y))^{n-1}}{(n-1)!}, \quad 0<y<1
$$

4. (a). Note that

$$
\begin{aligned}
f\left(x_{1}, \cdots, x_{n} \mid \theta\right) & =\prod_{i=1}^{n}\binom{2}{x_{i}} \theta^{x_{i}}(1-\theta)^{2-x_{i}} I_{\{0,1,2\}}\left(x_{i}\right) \\
& =\theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{2 n-\sum_{i=1}^{n} x_{i}} \cdot \prod_{i=1}^{n}\binom{2}{x_{i}} I_{\{0,1,2\}}\left(x_{i}\right) .
\end{aligned}
$$

Thus, by the factorization theorem, $\sum_{i=1}^{n} X_{i}$ is a one-dimensional sufficient statistic for $\theta$. Since
$f\left(x_{1}, \cdots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} I_{\{0,1,2\}}\left(x_{i}\right) \exp \left\{\sum_{i=1}^{n} x_{i} \log \left(\frac{\theta}{1-\theta}\right)+2 n \log (1-\theta)+\sum_{i=1}^{n} \log \binom{2}{x_{i}}\right\}$,
is one parameter exponential family with $\theta \in[0,1], \eta=\log (\theta /(1-\theta)) \in \overline{\mathbb{R}}=\{-\infty\} \cup$ $\mathbb{R} \cup\{\infty\}=\mathcal{N}_{0}$. Since $\mathcal{N}_{0}$ contains a one-dimensional open rectangle, $\sum_{i=1}^{n} X_{i}$ is the CSS for $\theta$.
(b). Note that

$$
\begin{aligned}
l(\theta) & =\sum_{i=1}^{n} x_{i} \log \theta+\left(2 n-\sum_{i=1}^{n} x_{i}\right) \log (1-\theta)+\sum_{i=1}^{n} \log \binom{2}{x_{i}} \\
\frac{\partial l(\theta)}{\partial \theta} & =\frac{\sum_{i=1}^{n} x_{i}}{\theta}-\frac{2 n-\sum_{i=1}^{n} x_{i}}{1-\theta}=0 .
\end{aligned}
$$

Thus, $\hat{\theta}=\bar{X} / 2$ and so $\widehat{\theta^{2}}=(\bar{X} / 2)^{2}$.
Also, since $E\left(X_{1}\right)=2 \theta$ and $E\left(X_{1}^{2}\right)=2 \theta(1+\theta)$,

$$
\begin{aligned}
E\left(\widehat{\theta^{2}}\right) & =\frac{1}{4 n^{2}} E\left(\sum_{i=1}^{n} X_{i}^{2}+2 \sum_{i<j} X_{i} X_{j}\right) \\
& =\frac{1}{4 n} E\left(X_{1}^{2}\right)+\frac{n-1}{4 n} E\left(X_{1}\right)^{2} \\
& =\theta^{2}+\frac{\theta(1-\theta)}{2 n} .
\end{aligned}
$$

So, if $\theta \neq 0$ or $2, \widehat{\theta^{2}}$ is not an unbiased estimator of $\theta^{2}$.
(c). If we let $T(X)=I\left(X_{1}=2\right)$ then $E_{\theta}(T(X))=P_{\theta}\left(X_{1}=2\right)=\theta^{2}$. Thus, $I\left(X_{1}=2\right)$ is an unbiased estimator of $\theta^{2}$. And we know that $\sum_{i=1}^{n} X_{i} \sim \mathrm{~B}(2 n, \theta)$. Thus,

$$
\begin{aligned}
E_{\theta}\left(I\left(X_{1}=2\right) \mid \sum_{i=1}^{n} X_{i}=t\right) & =P_{\theta}\left(X_{1}=2 \mid \sum_{i=1}^{n} X_{i}=t\right) \\
& =\frac{P_{\theta}\left(X_{1}=2\right) \cdot P_{\theta}\left(\sum_{i=2}^{n} X_{i}=t-2\right)}{P_{\theta}\left(\sum_{i=1}^{n} X_{i}=t\right)} \\
& =\frac{\frac{2!}{2!0!} \theta^{2}(1-\theta)^{0} \cdot \frac{(2 n-2)!}{(t-2)!(2 n-t)!} \theta^{t-2}(1-\theta)^{2 n-t}}{\frac{(2 n)!}{t!(2 n-t)!} \theta^{( }(1-\theta)^{2 n-t}} \\
& =\frac{t(t-1)}{2 n(2 n-1)} .
\end{aligned}
$$

Therefore, by Rao-Blackwell-Lehmann-Scheffé theorem, $\frac{\sum_{i=1}^{n} X_{i}\left(\sum_{i=1}^{n} X_{i}-1\right)}{2 n(2 n-1)}$ is the UMVUE of $\theta^{2}$.
5. (a). Here

$$
\frac{g(\mathbf{x})}{h(\mathbf{x})}=\frac{e^{-n} /\left(x_{1}!x_{2}!\cdots x_{n}!\right)}{(1 / 2)^{n}(1 / 2)^{x_{1}+x_{2}+\cdots+x_{n}}}=\frac{\left(2 e^{-1}\right)^{n} 2^{\sum x_{i}}}{\prod x_{i}!}
$$

Thus the best critical region is

$$
\mathcal{R}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): \frac{\left(2 e^{-1}\right)^{n} 2^{\sum x_{i}}}{\prod x_{i}!} \leq k\right\}
$$

For $k=1, n=1, \mathcal{R}=\left\{x_{1}: 2^{x_{1}} / x_{1}!\leq e / 2\right\}$. It is easy to see that this inequality is satisfied by all nonnegative integers except 1 and 2 . Thus, $\mathcal{R}=\{0,3,4,5, \ldots\}$.
(b). The level of the test is

$$
\alpha=P_{H_{0}}\left(X_{1} \in \mathcal{R}\right)=1-P_{H_{0}}\left(X_{1}=1,2\right)=1-1 / e-1 / 2 e=0.448
$$

(c). The power of the test is given by

$$
P_{H_{1}}\left(X_{1} \in \mathcal{R}\right)=1-P_{H_{1}}\left(X_{1}=1,2\right)=1-1 / 4-1 / 8=0.625 .
$$

6. The $\log$ likelihood function is given by

$$
\log L(\mathbf{x} ; \theta)=-n \log 2-\sum_{i=1}^{n}\left|x_{i}-\theta\right|
$$

Note that maximizing $\log L$ is the same as minimizing $g(\theta)=\sum_{i=1}^{n}\left|x_{i}-\theta\right|$. We can write $g(\theta)$ using the order statistics $x_{(1)} \leq \cdots \leq x_{(n)}$ as $g(\theta)=\sum_{i=1}^{n=1}\left|x_{(i)}-\theta\right|$. To find the minimizer of $g(\theta)$, suppose $x_{(j)} \leq \theta \leq x_{(j+1)}$. Then

$$
g(\theta)=\sum_{i=1}^{j-1}\left(\theta-x_{(i)}\right)+x_{(j+1)}-x_{(j)}+\sum_{i=j+2}^{n}\left(x_{(i)}-\theta\right) .
$$

Now increasing $\theta$ by a small amount $\epsilon$ will increase the left-hand sum by $(j-1) \epsilon$ and decrease the right-hand sum by $(n-j-1) \epsilon$. Thus $g(\theta)$ will decrease iff $n-j-1>j-1$ or $n>2 j$. Since $n=2 k+1$, the sum will drop if we increase $j$ up to $j=k$. Moreover, if $x_{(k)} \leq \theta \leq x_{(k+1)}$, then increasing $\theta$ by $\epsilon$ will decrease $g(\theta)$ until $\theta=x_{(k+1)}$ since $n>2 k$. For $j \geq k+1$, we have $n<2 j$ and thus $g(\theta)$ increases in $\theta$ if $\theta>x_{(k+1)}$. Thus, the MLE is $\hat{\theta}=x_{(k+1)}$.
Now $\hat{\theta}=x_{(k+1)}$ does not satisfy the likelihood equation because the likelihood equation is not differentiable at any data point.
7. The distribution of $T(\lambda)$ is normal with mean $\theta$ and variance

$$
\begin{aligned}
\tau^{2} & =\operatorname{var}[T(\lambda)]=\lambda^{2} \operatorname{var}\left(S_{1}\right)+(1-\lambda)^{2} \operatorname{var}\left(S_{2}\right)+2 \lambda(1-\lambda) \operatorname{cov}\left(S_{1}, S_{2}\right) \\
& =\frac{1}{n}\left(\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}\right) \lambda^{2}-\frac{1}{n} 2\left(\sigma_{2}^{2}-\rho \sigma_{1} \sigma_{2}\right) \lambda+\frac{1}{n} \sigma_{2}^{2}
\end{aligned}
$$

The power function is

$$
\begin{aligned}
\beta(\theta) & =P_{\theta}(|T(\lambda)|>c)=P_{\theta}(T(\lambda)>c)+P_{\theta}(T(\lambda)<-c) \\
& =1-\Phi\left(\frac{c-\theta}{\tau}\right)+\Phi\left(\frac{-c-\theta}{\tau}\right) .
\end{aligned}
$$

Because the significance level is $\alpha$, we have

$$
\alpha=\beta(0)=1-\Phi\left(\frac{c}{\tau}\right)+\Phi\left(\frac{-c}{\tau}\right)
$$

which yields $c=\tau z_{\alpha / 2}$. So the power function can be written as

$$
\beta(\theta)=1-\Phi\left(z_{\alpha / 2}-\frac{\theta}{\tau}\right)+\Phi\left(-z_{\alpha / 2}-\frac{\theta}{\tau}\right)
$$

For any given $\theta$,

$$
\frac{\partial \beta(\theta)}{\partial \tau}=-\phi\left(z_{\alpha / 2}-\frac{\theta}{\tau}\right) \frac{\theta}{\tau^{2}}+\phi\left(-z_{\alpha / 2}-\frac{\theta}{\tau}\right) \frac{\theta}{\tau^{2}}<0
$$

where $\phi$ is the density of $N(0,1)$. Notice that the above inequality holds because when $\theta>0, \phi\left(-z_{\alpha / 2}-\theta / \tau\right)<\phi\left(z_{\alpha / 2}-\theta / \tau\right)$ and when $\theta<0, \phi\left(-z_{\alpha / 2}-\theta / \tau\right)>\phi\left(z_{\alpha / 2}-\theta / \tau\right)$.
Therefore, in order to maximize $\beta(\theta)$, we only need to minimize $\tau$. Because $\tau$ is a quadratic function of $\lambda$ and $\left(\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}\right)>0, \tau^{2}$ is minimized at

$$
\lambda=\frac{\sigma_{2}^{2}-\rho \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}}
$$

