
Thursday, August 14, 2008

Mathematical Statistics Preliminary Examination

Statistics Group, Department of Mathematics and Statistics, Auburn University

Name:

1. It is a closed-book and in-class exam.

2. One page (letter size, 8.5-by-11in) cheat sheet is allowed.

3. Calculator is allowed. No laptop (or equivalent).

4. Show your work to receive full credits. Highlight your final answer.

5. Solve any five problems out of the seven problems.

6. Total points are 50. Each question is worth 10 points.

7. If you work out more than five problems, your score is the sum of five highest points.

8. Time: 150 minutes. (9:00am–11:30am, Thursday, August 14, 2008)
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Notation:
(

X

Y

)
∼ N

((
µx

µy

)
,

(
σ2

x ρσxσy

ρσxσy σ2
y

))
.

means X and Y jointly follow a bivariate normal distribution such that

E(X) = µx, E(Y ) = µy, var(X) = σ2
x, var(Y ) = σ2

y , cov(X,Y ) = ρσxσy.

1. Let Z = X2|(X1 > 0), where

(
X1

X2

)
∼ N

((
0

0

)
,

(
1 ρ

ρ σ2

))
.

Find the pdf of Z.

2. The joint distribution of Y and X is given by the following hierarchical model

Y |X ∼ Possion(X), X ∼ Gamma(α, β).

Calculate E(X|Y ).

3. (a) Let X be a Gamma(α, β) random variable with density function

f(x) =
1

Γ(α)βα
xα−1e−x/β, x > 0; α, β > 0.

Find the density of Y = e−X .

(b) Let X1, . . . , Xn be an iid random sample from uniform(0, 1). Find the density of

Y = X1X2 · · ·Xn =
∏n

i=1 Xi.

4. Let X1, . . . , Xn be a random sample from the following distribution:

f(x|θ) =

(
2

x

)
θx(1 − θ)2−xI{0,1,2}(x),

where the parameter space for the unknown θ is Θ = [0, 1].

(a) Is there a one-dimensional sufficient statistic and if so, what is it? Does a complete

sufficient statistic exist?

(b) Find a maximum likelihood estimator of θ2 = P (X1 = 2). Is it unbiased?

(c) Find a uniformly minimum variance unbiased estimator of θ2 if such exists.
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5. Let X be a random vector from an unknown distribution. According to the Neyman-

Pearson Lemma, if H0 is the simple null hypothesis that the joint density is g(x) versus

H1 the simple alternative hypothesis that the joint density is h(x), then R is the best

critical region of size α, if, for k > 0: (i) g(x)
h(x)

≤ k for x ∈ R, (ii) g(x)
h(x)

≥ k for x ∈ Rc,

and (iii) α = PH0
(X ∈ R).

Now let X1, . . . , Xn be a random sample from a distribution that has a probability

mass function f(x) that is positive only on the nonnegative integers. We wish to test

the simple hypothesis

H0 : f(x) =

{
e−1

x!
, x = 0, 1, 2, . . .

0 , elsewhere,

against the alternative simple hypothesis

H1 : f(x) =

{(
1
2

)x+1
, x = 0, 1, 2, . . .

0 , elsewhere.

(a) Determine the best critical region R for the case n = 1 and k = 1.

(b) Compute the level of the test for the case n = 1 and k = 1.

(c) Compute the power of the test (when H1 is true) for the case n = 1 and k = 1.

6. Let X1, . . . , Xn be a random sample from the Laplace distribution with density

f(x; θ) =
1

2
e−|x−θ| .

Suppose n = 2k + 1 is odd. Find the maximum likelihood estimator and show that it

does not satisfy the likelihood equation ∂ log L(θ)/∂θ = 0.

7. Suppose that X1, . . . , Xn is an iid sample from a population with density f(x; θ), where

θ is a unknown parameter. S1 and S2 are two different unbiased estimators of θ. It is

known that the joint distribution of S1 and S2 is bivariate normal,

(
S1

S2

)
∼ N

((
θ

θ

)
,

1

n

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
.

We want to use T (λ) = λS1 +(1−λ)S2 for testing H0 : θ = 0 versus Ha : θ 6= 0, where

λ is a constant. Consider the rejection region of the form |T (λ)| > c.

(a) Determine c at significance level α.

(b) Expression the power function β(θ) in terms of Φ, where Φ(·) is the cumulative

distribution function of N(0, 1).

(c) Find λ that maximizes β(θ) for any given θ.
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Solutions

1. The cdf of Z is

P (Z ≤ z) = P (X2 ≤ z|X1 > 0) =
P (X2 ≤ z,X1 > 0)

P (X1 > 0)

= 2P (X2 ≤ z, Y > −(ρ/σ2)X2)

= 2

∫ z

−∞

fX2
(x)

∫ ∞

−(ρ/σ2)x

fY (y)dydx

where Y = X1 − (ρ/σ2)X2 ∼ N(0, 1 − ρ2/σ2) and Y is independent of X2. Thus,

fZ(z) =
d

dz
P (Z ≤ z) = 2fX2

(z)

∫ ∞

−(ρ/σ2)z

fY (y)dy =
2

σ
φ(z/σ)Φ

(
−(ρ/σ2)z√
1 − ρ2/σ2

)
,

where φ(·) is a standard normal density and Φ(·) is a cdf of a standard normal rv.

2. The joint density of (Y,X) is

f(y, x) = f(y|x)f(x) =
1

y!
e−xxy 1

Γ(α)βα
xα−1ex/β

=
1

Γ(α)βαy!
ey+α−1e−(1+1/β)x, x > 0, y = 0, 1, 2, . . . .

The marginal density of Y is

f(y) =

∫ ∞

0

f(y, x)dx =
Γ(y + α)(1 + 1/β)−(y+α)

Γ(α)βαy!

=
Γ(y + α)

Γ(α)y!

βy

(1 + β)y+α
, y = 0, 1, 2, . . . .

Therefore, the conditional density of X|Y is

f(x|y) =
(1 + 1/β)y+α

Γ(y + α)
xy+α−1e−(1+1/β)x, x > 0.

It is a Gamma(y + α, (1 + 1/β)−1) distribution and

E(X|Y ) =
Y + α

1 + 1/β
.

3. (a). It is easy to see that X = − log(Y ). The density of Y is

f(y) =
1

Γ(α)βα
(− log(Y ))α−1y1/β−1, 0 < y < 1.

When α = β = 1, Y follows uniform(0, 1).
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(b). Let T = − log(Y ) =
∑n

i=1{− log(Xi)}. Because Xi follows uniform(0, 1), we

know that − log(Xi) follows Gamma(1, 1) and T follows Gamma(n, 1). Applying the

results in (a), the density of Y = e−T is

f(y) =
1

Γ(n)
(− log(y))n−1 =

(− log(y))n−1

(n − 1)!
, 0 < y < 1.

4. (a). Note that

f(x1, · · · , xn|θ) =
n∏

i=1

(
2

xi

)
θxi(1 − θ)2−xiI{0,1,2}(xi)

= θ
∑

n

i=1
xi(1 − θ)2n−

∑
n

i=1
xi ·

n∏

i=1

(
2

xi

)
I{0,1,2}(xi).

Thus, by the factorization theorem,
∑n

i=1 Xi is a one-dimensional sufficient statistic

for θ. Since

f(x1, · · · , xn|θ) =
n∏

i=1

I{0,1,2}(xi) exp

{ n∑

i=1

xi log

(
θ

1 − θ

)
+2n log(1−θ)+

n∑

i=1

log

(
2

xi

)}
,

is one parameter exponential family with θ ∈ [0, 1], η = log(θ/(1− θ)) ∈ R̄ = {−∞}∪
R ∪ {∞} = N0. Since N0 contains a one-dimensional open rectangle,

∑n
i=1 Xi is the

CSS for θ.

(b). Note that

l(θ) =
n∑

i=1

xi log θ +

(
2n −

n∑

i=1

xi

)
log(1 − θ) +

n∑

i=1

log

(
2

xi

)

∂l(θ)

∂θ
=

∑n
i=1 xi

θ
−

2n −
∑n

i=1 xi

1 − θ
= 0.

Thus, θ̂ = X̄/2 and so θ̂2 = (X̄/2)2.

Also, since E(X1) = 2θ and E(X2
1 ) = 2θ(1 + θ),

E
(
θ̂2
)

=
1

4n2
E

( n∑

i=1

X2
i + 2

∑

i<j

XiXj

)

=
1

4n
E(X2

1 ) +
n − 1

4n
E(X1)

2

= θ2 +
θ(1 − θ)

2n
.

So, if θ 6= 0 or 2, θ̂2 is not an unbiased estimator of θ2.
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(c). If we let T (X) = I(X1 = 2) then Eθ

(
T (X)

)
= Pθ

(
X1 = 2

)
= θ2. Thus, I(X1 = 2)

is an unbiased estimator of θ2. And we know that
∑n

i=1 Xi ∼ B(2n, θ). Thus,

Eθ

(
I(X1 = 2)

∣∣∣∣
n∑

i=1

Xi = t

)
= Pθ

(
X1 = 2

∣∣∣∣
n∑

i=1

Xi = t

)

=
Pθ(X1 = 2) · Pθ(

∑n
i=2 Xi = t − 2)

Pθ(
∑n

i=1 Xi = t)

=

2!
2!0!

θ2(1 − θ)0 · (2n−2)!
(t−2)!(2n−t)!

θt−2(1 − θ)2n−t

(2n)!
t!(2n−t)!

θt(1 − θ)2n−t

=
t(t − 1)

2n(2n − 1)
.

Therefore, by Rao-Blackwell-Lehmann-Scheffé theorem,

∑n
i=1 Xi

(∑n
i=1 Xi − 1

)

2n(2n − 1)
is the

UMVUE of θ2.

5. (a). Here
g(x)

h(x)
=

e−n/(x1!x2! · · ·xn!)

(1/2)n(1/2)x1+x2+···+xn

=
(2e−1)n2

∑
xi

∏
xi!

.

Thus the best critical region is

R =

{
x = (x1, . . . , xn) :

(2e−1)n2
∑

xi

∏
xi!

≤ k

}
.

For k = 1, n = 1, R = {x1 : 2x1/x1! ≤ e/2}. It is easy to see that this inequality is

satisfied by all nonnegative integers except 1 and 2. Thus, R = {0, 3, 4, 5, . . .}.

(b). The level of the test is

α = PH0
(X1 ∈ R) = 1 − PH0

(X1 = 1, 2) = 1 − 1/e − 1/2e = 0.448 .

(c). The power of the test is given by

PH1
(X1 ∈ R) = 1 − PH1

(X1 = 1, 2) = 1 − 1/4 − 1/8 = 0.625 .

6. The log likelihood function is given by

log L(x; θ) = −n log 2 −
n∑

i=1

|xi − θ| .

Note that maximizing log L is the same as minimizing g(θ) =
∑n

i=1 |xi − θ|. We can

write g(θ) using the order statistics x(1) ≤ · · · ≤ x(n) as g(θ) =
∑n

i=1 |x(i) − θ|. To find

the minimizer of g(θ), suppose x(j) ≤ θ ≤ x(j+1). Then

g(θ) =

j−1∑

i=1

(θ − x(i)) + x(j+1) − x(j) +
n∑

i=j+2

(x(i) − θ) .
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Now increasing θ by a small amount ε will increase the left-hand sum by (j − 1)ε and

decrease the right-hand sum by (n−j−1)ε. Thus g(θ) will decrease iff n−j−1 > j−1

or n > 2j. Since n = 2k + 1, the sum will drop if we increase j up to j = k. Moreover,

if x(k) ≤ θ ≤ x(k+1), then increasing θ by ε will decrease g(θ) until θ = x(k+1) since

n > 2k. For j ≥ k +1, we have n < 2j and thus g(θ) increases in θ if θ > x(k+1). Thus,

the MLE is θ̂ = x(k+1).

Now θ̂ = x(k+1) does not satisfy the likelihood equation because the likelihood equation

is not differentiable at any data point.

7. The distribution of T (λ) is normal with mean θ and variance

τ 2 = var[T (λ)] = λ2var(S1) + (1 − λ)2var(S2) + 2λ(1 − λ)cov(S1, S2)

=
1

n
(σ2

1 + σ2
2 − 2ρσ1σ2)λ

2 −
1

n
2(σ2

2 − ρσ1σ2)λ +
1

n
σ2

2.

The power function is

β(θ) = Pθ(|T (λ)| > c) = Pθ(T (λ) > c) + Pθ(T (λ) < −c)

= 1 − Φ
(c − θ

τ

)
+ Φ

(−c − θ

τ

)
.

Because the significance level is α, we have

α = β(0) = 1 − Φ
( c

τ

)
+ Φ

(−c

τ

)
,

which yields c = τzα/2. So the power function can be written as

β(θ) = 1 − Φ
(
zα/2 −

θ

τ

)
+ Φ

(
− zα/2 −

θ

τ

)

For any given θ,

∂β(θ)

∂τ
= −φ

(
zα/2 −

θ

τ

) θ

τ 2
+ φ
(
− zα/2 −

θ

τ

) θ

τ 2
< 0,

where φ is the density of N(0, 1). Notice that the above inequality holds because when

θ > 0, φ(−zα/2−θ/τ) < φ(zα/2−θ/τ) and when θ < 0, φ(−zα/2−θ/τ) > φ(zα/2−θ/τ).

Therefore, in order to maximize β(θ), we only need to minimize τ . Because τ is a

quadratic function of λ and (σ2
1 + σ2

2 − 2ρσ1σ2) > 0, τ 2 is minimized at

λ =
σ2

2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

.
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