2010 Mathematical Statistics (STAT 7600/7610) Preliminary Exam Ph.D. Program, Department of Mathematics and Statistics, Auburn University Exam Produced by Statistics Group, Department of Mathematics and Statistics

INSTRUCTIONS FOR 2010 PRELIM:

Exam Time/Date: 4:00pm-6:30pm, Sunday, October 17, 2010

- 1. It is a closed-book, in-class written exam.
- 2. Calculator is allowed. No laptop (or equivalent).
- 3. Show your work to receive full credit. Highlight your final answer.
- 4. Solve any five problems out of the seven problems.
- 5. Total points are 50. Each question is worth 10 points.
- 6. If you work out more than five problems, your score is the sum of five highest points.
- 7. Time: 150 minutes. (4:00pm-6:30pm, Sunday, October 17, 2010)

1	2	3	4	5	6	7	Total

NOTE: You must show all your work on each problem. You will be graded on correctness, completeness, and style.

2010 Mathematical Statistics (STAT 7600/7610) Preliminary Exam Ph.D. Program, Department of Mathematics and Statistics, Auburn University Exam Produced by Statistics Group, Department of Mathematics and Statistics

- 1. Let $X \in \mathbb{R}^p$ denote a real valued random input vector and $Y \in \mathbb{R}$ a real valued random output variable, with joint distribution Pr(X, Y). We seek a function f(X) for predicting Y given values of the input X. Based on a loss function L(X,f(X)) for penalizing errors in prediction, we would like to find the function that minimizes the expected prediction error defined as EPE(f) = EL(Y, f(X)). For the following two loss functions find an expression for the function that minimizes the EPE (in each case you must demonstrate that the function does indeed minimize EPE):
 - (a) Square error loss, $L(Y, f(X)) = (Y f(X))^2$
 - (b) Absolute error loss, L(Y, f(X)) = |Y f(X)|.
- 2. Prove The Poisson Postulates Theorem: For each $t \ge 0$, let N_t be an integer-valued random variable with the following properties. (Think of N_t as denoting the number of arrivals in the time period from time 0 to time t.)
 - (i) $N_0 = 0$ (start with no arrivals)
 - (ii) $s < t \implies N_s$ and $N_t N_s$ are independent (arrivals in disjoint time periods are independent)
 - (iii) N_s and $N_{t+s} N_t$ are identically distributed (number of arrivals depends only on period length)
 - (iv) $\lim_{t\to 0} \frac{P(N_t=1)}{t} = \lambda$ (arrival probability proportional to period length, if length is small)
 - (v) $\lim_{t\to 0} \frac{P(N_t>1)}{t} = 0$ (no simultaneous arrivals)
 - (vi) If i-v hold, then for any integer n, $P(N_t = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, i.e., N_t \sim Poisson(\lambda t).$
- 3. For any two random variables X and Y,
 - (a) prove that E(X) = E(E(X|Y)) and VarX = E(Var(X|Y)) + Var(E(X|Y)).
 - (b) If $X|Y \sim binomial(Y, p)$ and $Y \sim Poisson(\lambda)$, then find EX and Var(X).
 - (c) Find the marginal distribution of X given in (b).
- 4. (a) Prove Basu's Theorem: If $T(\mathbf{X})$ is a complete and minimal sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic. (b) use Basu's Theorem to show that $g(X) = \frac{X_n}{X_1 + \dots + X_n}$ and $T(X) = X_n + \dots + X_n$ are independent, where X_1, \dots, X_n are iid exponentials with parameter θ .

2010 Mathematical Statistics (STAT 7600/7610) Preliminary Exam Ph.D. Program, Department of Mathematics and Statistics, Auburn University Exam Produced by Statistics Group, Department of Mathematics and Statistics

- 5. Let $X_1, ..., X_n$ be iid Poisson (λ) and let \overline{X} and S^2 denote the sample mean and variance, respectively.
 - (a) Prove that \overline{X} is the best unbiased estimator of λ .
 - (b) Prove the identity $E(S^2|\bar{X}) = \bar{X}$, and use it to explicitly demonstrate that $Var(S^2) > Var(\bar{X})$.
 - (c) Using completeness, can a general theorem be formulated for which the identity in part (b) is a special case? If so, show it.
- 6. Let $X_1, ..., X_n$ be iid Poisson(λ), and let λ have a gamma(α, β) distribution, the conjugate family for the Poisson.
 - (a) Define conjugate family, in general.
 - (b) Find the posterior distribution of λ .
 - (c) Find the Bayes estimator of λ and derive its variance.
- 7. State and Prove the Central Limit Theorem (use any version you want, but state the assumptions that you make).