ALGEBRA PRELIMINARY EXAM, SPRING 2015

Name (please print):

	total	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
total	110	

Instructions:

- Answer each question on a new piece of paper.
- Restate each question.
- Write clearly and legibly.
- Be sure to fully explain all your answers, and give a structured, understandable argument.
- Answers will be graded on clarity and the correctness of the main steps of the reasoning.
- Though much effort has been made to eliminate typos and simple mistakes, if you notice one, ask the proctor. Do not interpret a problem in a way that would make it trivial.
- You may quote major results from the textbook (Hungerford), class notes, and homework.

Good luck!

Exercise 1. Prove that a group of order 182 is solvable. (Note: $182=2 \cdot 7 \cdot 13$)
Exercise 2. Suppose G is a group of order $56=2^{3} \cdot 7$. Show that G is not simple.
Exercise 3. Classify all groups of order 2015.
Exercise 4. Find the galois group of $x^{4}-4 x^{2}+2 \in \mathbb{Q}[x]$.
Exercise 5. Give examples of the following objects:
(a) An irreducible polynomial over \mathbb{Q} that can be proved to be so using Eisenstein's criterion for $p=5$.
(b) A UFD that isn't a PID.
(c) A finite extension of $\mathbb{Z}_{p}(x)$ (the field of rational functions in x with coefficients in \mathbb{Z}_{p}) that is normal but not separable.
Exercise 6. Let $i=\sqrt{-1}$ and let x be an indeterminate. Consider $\mathbb{Z} \times \mathbb{Z}, \mathbb{Z}[i]$, and $\mathbb{Z}[x] /\left\langle x^{2}\right\rangle$.
(a) Show that all three all isomorphic as additive groups.
(b) Show that no two are isomorphic as rings.

Exercise 7.

(a) Let F and K be fields with $F \subset K$. Let $\alpha, \beta \in K$ be algebraic over F with minimal polynomials $f, g \in F[x]$. Show that f is irreducible over $F(\alpha)$ if and only if g is irreducible over $F(\beta)$.
(b) (i) Compute the factorization of $x^{6}-4$ over \mathbb{C}.
(ii) Let K be the splitting field of $x^{6}-4$. Compute $[K: \mathbb{Q}]$.

Exercise 8. Let F be a field and let F^{*} denote the nonzero elements in F. A discrete valuation on F is a function $\nu: F^{*} \rightarrow \mathbb{Z}$ such that
i $\nu(a b)=\nu(a)+\nu(b)$ for all $a, b \in F^{*}$, i.e. ν is a homomorphism from the multiplicative group F^{*} to the additive group \mathbb{Z}.
ii ν is surjective.
iii $\nu(a+b) \geq \min \{\nu(a), \nu(b)\}$ for all $a, b \in F^{*}$ with $a+b \neq 0$.
The set $R=\left\{x \in F^{*} \mid \nu(x) \geq 0\right\} \cup\{0\}$ is called the valuation ring of ν.
(a) Prove that R is a subring of F containing the identity.
(b) Prove that for each nonzero $x \in F$, either x or x^{-1} is in R.

Exercise 9. Suppose R is a commutative ring with unity. Suppose A and B are R-modules. Recall that the tensor product of A and B over R, denoted $A \otimes_{R} B$ is the R-module generated by all formal symbols $a \otimes b$ (for $a \in A$ and $b \in B$) such that for all $a, a^{\prime} \in A, b, b^{\prime} \in B, r \in R$:
(i) $\left(a+a^{\prime}\right) \otimes b=a \otimes b+a^{\prime} \otimes b$,
(ii) $a \otimes\left(b+b^{\prime}\right)=a \otimes b+a \otimes b^{\prime}$,
(iii) $(r a) \otimes b=a \otimes(r b)$.

Prove that if A and B are projective R-modules, then $A \otimes_{R} B$ is a projective R-module.
Exercise 10. Suppose that $[\mathbb{Q}(u): \mathbb{Q}]$ is odd. Show that $\mathbb{Q}\left(u^{2}\right)=\mathbb{Q}(u)$.
Exercise 11. Let \mathbb{F}_{2} denote the field with 2 elements. Find an inverse of $(1+x)^{3}$ in $\mathbb{F}_{2}[[x]]$.

