MATRICES PRELIMINARY EXAM, SUMMER 2016

Name (please print): _____

Instructions:

- (1) Answer each question on a new piece of paper.
- (2) Restate each question.
- (3) Write clearly and legibly.
- (4) Be sure to fully explain all your answers, and give a structured, understandable argument.
- (5) Answers will be graded on clarity and the correctness of the main steps of the reasoning.
- (6) Though much effort has been made to eliminate typos and simple mistakes, if you notice one, ask the proctor. Do not interpret a problem in a way that would make it trivial.
- (7) You may quote major results from the textbook.

Good luck!

Exercise 1. Prove 2 of the following 3 statements.

- (1) Prove that matrix rank is lower semi-continuous (informally, that matrix rank can never go up in a limit).
- (2) Prove that matrix rank is sub-additive, i.e. $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$ for all $A, B \in M_n$.
- (3) Suppose $A \in M_n(\mathbb{C})$ is stochastic. Prove that the rank of A is at most n-1.

Exercise 2. Prove 2 of the following 3 statements.

- (1) Prove that the set of real positive semidefinite matrices forms a convex cone in the Euclidean space $M_n \cong \mathbb{R}^{n^2}$.
- (2) Prove that if $A \in M_n$ is Hermitian then A is positive semidefinite if and only if there is a sequence of positive definite matrices A_1, A_2, \ldots , such that $A_k \to A$ as $k \to \infty$.
- (3) Show that the determinant of the Kronecker product of two matrices $A \in M_n$ and $B \in M_m$ is

$$\det(A \otimes B) = \det(A)^m \det(B)^n$$

Exercise 3 (H-J 1.2.P4). Suppose that $A \in M_n$ is idempotent. Show that every coefficient of the characteristic polynomial $p_A(t)$ is an integer.

Exercise 4 (H-J 1.2.P22). Consider the $n \times n$ circulant matrix

$$C_n = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & 1 & & \vdots \\ & \ddots & \ddots & 0 \\ 0 & & & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

For a given $\epsilon > 0$ let $C_n(\epsilon)$ be the matrix obtained from C_n by replacing its (n, 1) entry by ϵ . Prove the following:

- (1) The characteristic polynomial of $C_n(\epsilon)$ is $p_{C_n(\epsilon)} = t^n \epsilon$.
- (2) The spectrum of $C_n(\epsilon)$ is $\sigma(C_n(\epsilon)) = \{\epsilon^{1/n} e^{2\pi i k/n} \mid k = 0, 1, \dots, n-1\}.$ (3) The spectral radius of $I + C_n(\epsilon)$ is $\rho(I + C_n(\epsilon)) = 1 + \epsilon^{1/n}.$

Exercise 5 (H-J 1.3.P28, 1.3.P34). Prove one of the following:

- (1) Let $A \in M_{m,n}$, and $B \in M_{n,m}$ be given. Prove that $\det(I_m + AB) = \det(I_n + BA)$.
- (2) If $A, B \in M_n$ are similar, show that $\operatorname{adj}(A)$ and $\operatorname{adj}(B)$ are similar.

Exercise 6 (H-J 1.4.P12). Let λ be an eigenvalue of $A \in M_n$. (a) Show that every list of n-1 columns of $A - \lambda I$ is linearly independent if and only if no eigenvector of A associated with λ has a zero entry. (b) If no eigenvector of A associated with λ has a zero entry, why must λ have geometric multiplicity 1?

Exercise 7 (H-J p90 Cholesky factorization). Show that any $B \in M_n$ of the form $B = A^*A$, with $A \in M_n$, may be written as $B = LL^*$, in which $L \in M_n$ is lower triangular and has non-negative diagonal entries. Explain why this factorization is unique if A is non-singular.

Exercise 8 (H-J 2.1.23). Let $A \in M_n$, let A = QR be a QR factorization, and partition A, Q, and R according to their columns: $A = [a_1 \dots a_n], Q = [q_1 \dots q_n], R = [r_1 \dots r_n]$. Explain why $|\det A| = \det R = r_{11} \cdots r_{nn}$ and why $||a_i||_2 = ||r_i||_2 \ge r_{ii}$ for each i = 1, ..., n, with equality if and only if either (a) some $a_i = 0$ or (b) A has orthogonal columns (i.e. $A^*A = \text{diag}(||a_1||_2^2, \dots, ||a_n||_2^2)).$

Exercise 9 (H-J Theorem 2.3.3). Let $\mathcal{F} \subset M_n$ be a nonempty commuting family. Prove that there is a unitary matrix $U \in M_n$ such that U^*AU is upper triangular for every $A \in \mathcal{F}$.

Exercise 10. Prove the Cayley-Hamilton Theorem: Let $p_A(t)$ be the characteristic polynomial of $A \in M_n$. Then $p_A(A) = 0.$

Exercise 11 (H-J 2.4.P10). Show that $A, B \in M_n$ have the same characteristic polynomials, and hence the same eigenvalues, if and only if $\operatorname{tr} A^k = \operatorname{tr} B^k$ for all $k = 1, \ldots, n$. Deduce that A is nilpotent if and only if $\operatorname{tr} A^k = 0$ for all $k=1,\ldots,n.$

Exercise 12 (H-J 3.2.P16). Let $A \in M_n$ have Jordan canonical form $J_{n_1(\lambda_1} \oplus \cdots \oplus J_{n_k}(\lambda_k)$. If A is nonsingular, show that the Jordan canonical form of A^2 is $J_{n_1(\lambda_1^2)} \oplus \cdots \oplus J_{n_k}(\lambda_k^2)$. However, the Jordan canonical form of $J_m(0)^2$ is not $J_m(0^2)$ if $m \geq 2$; explain.

Exercise 13 (H-J 4.4.P26, P28). Prove one of the following

- (1) Show that real matrices $A, B \in M_n(\mathbb{R})$ are complex orthogonally similar if and only if they are real orthogonally similar.
- (2) Let $A \in M_n$ be given. Show that $\det(I + A\overline{A})$ is real and non-negative.

Exercise 14. Carefully state and prove one of the following two.

- (1) Eigenvalue monotonicity for Hermitian matrices.
- (2) Eigenvalue interlacing for Hermitian matrices.

Exercise 15. Do one of the following two.

- (1) Use Jordan canonical form to explain the geometric multiplicity-algebraic multiplicity inequality.
- (2) Explain the difference between a vector norm and a matrix norm for matrices. Give an example of one that is not the other.

Exercise 16. Let $A \in M_n$. Assume Theorem 5.6.12: $\lim_{k\to\infty} A^k = 0$ if and only if $\rho(A) < 1$. Prove Corollary 5.6.14 (Gelfand's formula): Let $||| \cdot |||$ be a matrix norm on M_n . Then $\rho(A) = \lim_{k\to\infty} |||A^k|||^{1/k}$.

Exercise 17 (H-J 5.6.P47). If $A, B \in M_n$, A is nonsingular, and B is singular, show that

$$|||A - B||| \ge 1/|||A^{-1}|||.$$

Can a nonsingular matrix be closely approximated by a singular matrix?

Exercise 18 (H-J 5.8.P10). If the spectral norm is used, show that $\kappa(A^*A) = \kappa(AA^*) = \kappa(A^2)$ Explain why the problem of solving $A^*Ax = y$ may be intrinsically less tractable numerically than the problem of solving Ax = z.

Exercise 19 (H-J 6.1.P6). Recall the notation for the deleted absolute row sums of $A = [a_{ij}] \in M_n$:

$$R'_i(A) = \sum_{i \neq j} |a_{ij}|, \quad i = 1, \dots, n$$

Suppose $|a_{ii}| > R'_i$ for k different values of i. Use properties of principal submatrices of A to show that rank $A \ge k$.

Exercise 20 (H-J 6.3.P4(a)). Let $A \in M_n$ be normal, let S be a given k-dimensional subspace of \mathbb{C}^n , and let $\gamma \in \mathbb{C}$ and $\delta > 0$ be given. If $||Ax - \gamma x||_2 \leq \delta$ for every unit vector $x \in S$, show that there are at least k eigenvalues of A in the disc $\{z \in \mathbb{C} \mid |z - \gamma| \leq \delta\}$.

Exercise 21 (H-J 7.3.P7: the Moore–Penrose generalized inverse.). Let $A \in M_{m,n}$ and let $A = V\Sigma W^*$ be a singular value decomposition. Define $A^{\dagger} = W\Sigma^{\dagger}V^*$, in which Σ^{\dagger} is obtained from Σ by first replacing each nonzero singular value with its inverse and then transposing. Show that

- (1) AA^{\dagger} and $A^{\dagger}A$ are Hermitian.
- $(2) AA^{\dagger}A = A$
- $(3) A^{\dagger}AA^{\dagger} = A^{\dagger}$
- (4) $A^{\dagger} = A^{-1}$ if A is square and nonsingular.
- (5) $(A^{\dagger})^{\dagger} = A.$
- (6) A^{\dagger} is uniquely determined by properties (1-3).