STAT 7600/7610 Mathematics Statistics Preliminary Exam August 10, 2016

Statistics Group, Department of Mathematics and Statistics Auburn University

Name:

- 1. It is a closed-book in-class exam.
- 2. Calculator is allowed.
- 3. Show your work to receive full credits. Highlight your final answer.
- 4. Solve any five problems out of eight.
- 5. Total points are 50 with 10 points for each problem.
- 6. Time: 180 minutes. (8:00am 11:00am, August 10th, 2016)

1	2	3	4	5	6	7	8	Total

1. (a) Suppose that T_n has a χ^2 distribution of n degrees of freedom. Show that

$$\sqrt{2T_n} - \sqrt{2n}$$

converges in distribution to N(0, 1).

(b) Let Y_1 and Y_2 be iid uniform(0,1) random variables. Define

$$X_1 = cos(2\pi Y_2)\sqrt{-2log(Y_1)}$$
 and $X_2 = sin(2\pi Y_2)\sqrt{-2log(Y_1)}$

Derive the joint distribution of X_1 and X_2 . Name the marginal distributions of X_1 and X_2 .

- 2. Suppose that X_1, X_2, \ldots, X_n are iid Poisson (λ) .
 - (a) Find the best unbiased estimators of $e^{-\lambda}$ and $\lambda e^{-\lambda}$.
 - (b) For the best unbiased estimator of $\lambda e^{-\lambda}$ in part (a), calculate the asymptotic relative efficiency with MLE of λ . Which estimator do you prefer?

- 3. Assume that a random variable $Y = ln(X) \sim N(\mu, \sigma^2)$, so that X has a lognormal distribution. Let X_1, \ldots, X_n be iid random variables of the lognormal distribution for X, and suppose that we are interested in the maximum likelihood estimator (MLE) $\hat{\xi}$ of $\xi = E(X)$.
 - (a) Find an explicit expression for the MLE $\hat{\xi}$ of the parameter ξ .
 - (b) Show that MLE $\hat{\xi}$ is asymptotically unbiased estimator of the parameter ξ .

- 4. Let X_1, \ldots, X_n be iid random variables of $Poisson(\sqrt{\lambda})$ where $\lambda > 0$.
 - (a) Construct the uniformly most powerful (UMP) level α test of H_0 : $\lambda_0 = 1$ vs $H_1: \lambda_0 > 1$.
 - (b) If n = 1 and $\alpha = 0.05$, what is the reject region of the test?
 - (c) If $\hat{\lambda}_n$ is the MLE for λ , find the limiting distribution of $\sqrt{n}(\hat{\lambda}_n \lambda)$.

5. Let X_1, \ldots, X_n be a random sample from a distribution with the joint pdf

$$f(x \mid \theta) = \frac{1}{2\theta^3} e^{-x/\theta} x^2, \quad x > 0, \ \theta > 0.$$

- (a) Let $T = \sum_{i=1}^{n} X_i$ be a statistic for θ . Show that T has the monotone likelihood ratio property.
- (b) Find the UMP test procedure for testing $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$ at the level $\alpha = 0.05$.
- (c) Compute the power function of the test procedure obtained in (b).

6. Let X_1, \ldots, X_n be a random sample from

$$f(x \mid \theta) = \frac{\log(\theta)}{\theta - 1} \theta^x, \quad 0 < x < 1, \quad \theta > 1$$

- (a) Find a function $\phi = \phi(\theta)$ of θ such that there is an unbiased estimator $\hat{\phi}$ of ϕ with variance $Var(\hat{\phi})$ achieving the Cramér-Rao lower bound. Obtain $\hat{\phi}$.
- (b) Is the estimator $\hat{\phi}$ obtained in (a) above the UMVUE (Uniformly Minimum Variance Unbiased estimator) of ϕ ? Why?

- 7. Let X_1, \ldots, X_n be a random sample from $N(\theta, \theta^2)$, $\theta > 0$. We know that \bar{X} , the sample mean, and cS (c > 0), where $S = (\frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2)^{1/2}$, are both unbiased estimators of θ .
 - (a) How do you find c? Explain.
 - (b) Prove that

$$k\bar{X} + (1-k)(cS)$$

is an unbiased estimator of θ for any number k.

- (c) What is the value of k that produces the estimator with a minimum variance?
- (d) Show that (\bar{X}, S^2) a sufficient statistic for θ , but it is not a complete sufficient statistic.

- 8. Suppose that X_1, \ldots, X_n are iid $N(\theta, 1)$ random variables with $\theta \in R$.
 - (a) Find the Fisher information $I_n(\theta)$.
 - (b) Define

$$\hat{\theta}_n = \begin{cases} \bar{X}, & |\bar{X}| \ge n^{-1/4} \\ t\bar{X}, & |\bar{X}| < n^{-1/4} \end{cases}$$

where t is a fixed constant. Show that

$$[V_n(\theta)]^{-1/2}(\hat{\theta}_n - \theta) \longrightarrow^d N(0, 1)$$

where $V_n(\theta) = V(\theta)/n$, and $V(\theta) = 1$ if $\theta \neq 0$ and $V(\theta) = t^2$ if $\theta = 0$.