STAT 7600/7610 Mathematics Statistics Preliminary Exam August 10, 2016

Statistics Group, Department of Mathematics and Statistics Auburn University

Name:

1. It is a closed-book in-class exam.
2. Calculator is allowed.
3. Show your work to receive full credits. Highlight your final answer.
4. Solve any five problems out of eight.
5. Total points are 50 with 10 points for each problem.
6. Time: 180 minutes. (8:00am - 11:00am, August 10th, 2016)

1	2	3	4	5	6	7	8	Total

1. (a) Suppose that T_{n} has a χ^{2} distribution of n degrees of freedom. Show that

$$
\sqrt{2 T_{n}}-\sqrt{2 n}
$$

converges in distribution to $N(0,1)$.
(b) Let Y_{1} and Y_{2} be iid uniform $(0,1)$ random variables. Define

$$
X_{1}=\cos \left(2 \pi Y_{2}\right) \sqrt{-2 \log \left(Y_{1}\right)} \text { and } X_{2}=\sin \left(2 \pi Y_{2}\right) \sqrt{-2 \log \left(Y_{1}\right)}
$$

Derive the joint distribution of X_{1} and X_{2}. Name the marginal distributions of X_{1} and X_{2}.
2. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are iid $\operatorname{Poisson}(\lambda)$.
(a) Find the best unbiased estimators of $e^{-\lambda}$ and $\lambda e^{-\lambda}$.
(b) For the best unbiased estimator of $\lambda e^{-\lambda}$ in part (a), calculate the asymptotic relative efficiency with MLE of λ. Which estimator do you prefer?
3. Assume that a random variable $Y=\ln (X) \sim N\left(\mu, \sigma^{2}\right)$, so that X has a lognormal distribution. Let X_{1}, \ldots, X_{n} be iid random variables of the lognormal distribution for X, and suppose that we are interested in the maximum likelihood estimator (MLE) $\hat{\xi}$ of $\xi=E(X)$.
(a) Find an explicit expression for the MLE $\hat{\xi}$ of the parameter ξ.
(b) Show that MLE $\hat{\xi}$ is asymptotically unbiased estimator of the parameter ξ.
4. Let X_{1}, \ldots, X_{n} be iid random variables of $\operatorname{Poisson}(\sqrt{\lambda})$ where $\lambda>0$.
(a) Construct the uniformly most powerful (UMP) level α test of $H_{0}: \lambda_{0}=1$ vs $H_{1}: \lambda_{0}>1$.
(b) If $n=1$ and $\alpha=0.05$, what is the reject region of the test?
(c) If $\hat{\lambda}_{n}$ is the MLE for λ, find the limiting distribution of $\sqrt{n}\left(\hat{\lambda}_{n}-\lambda\right)$.
5. Let X_{1}, \ldots, X_{n} be a random sample from a distribution with the joint pdf

$$
f(x \mid \theta)=\frac{1}{2 \theta^{3}} e^{-x / \theta} x^{2}, \quad x>0, \quad \theta>0
$$

(a) Let $T=\sum_{i=1}^{n} X_{i}$ be a statistic for θ. Show that T has the monotone likelihood ratio property.
(b) Find the UMP test procedure for testing $H_{0}: \theta \leq \theta_{0}$ vs. $H_{1}: \theta>\theta_{0}$ at the level $\alpha=0.05$.
(c) Compute the power function of the test procedure obtained in (b).
6. Let X_{1}, \ldots, X_{n} be a random sample from

$$
f(x \mid \theta)=\frac{\log (\theta)}{\theta-1} \theta^{x}, \quad 0<x<1, \quad \theta>1
$$

(a) Find a function $\phi=\phi(\theta)$ of θ such that there is an unbiased estimator $\hat{\phi}$ of ϕ with variance $\operatorname{Var}(\hat{\phi})$ achieving the Cramér-Rao lower bound. Obtain $\hat{\phi}$.
(b) Is the estimator $\hat{\phi}$ obtained in (a) above the UMVUE (Uniformly Minimum Variance Unbiased estimator) of ϕ ? Why?
7. Let X_{1}, \ldots, X_{n} be a random sample from $\mathrm{N}\left(\theta, \theta^{2}\right), \theta>0$. We know that \bar{X}, the sample mean, and $c S(c>0)$, where $S=\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)^{1 / 2}$, are both unbiased estimators of θ.
(a) How do you find c? Explain.
(b) Prove that

$$
k \bar{X}+(1-k)(c S)
$$

is an unbiased estimator of θ for any number k .
(c) What is the value of k that produces the estimator with a minimum variance?
(d) Show that $\left(\bar{X}, S^{2}\right)$ a sufficient statistic for θ, but it is not a complete sufficient statistic.
8. Suppose that X_{1}, \ldots, X_{n} are iid $N(\theta, 1)$ random variables with $\theta \in R$.
(a) Find the Fisher information $I_{n}(\theta)$.
(b) Define

$$
\hat{\theta}_{n}= \begin{cases}\bar{X}, & |\bar{X}| \geq n^{-1 / 4} \\ t \bar{X}, & |\bar{X}|<n^{-1 / 4}\end{cases}
$$

where t is a fixed constant. Show that

$$
\left[V_{n}(\theta)\right]^{-1 / 2}\left(\hat{\theta}_{n}-\theta\right) \longrightarrow^{d} N(0,1)
$$

where $V_{n}(\theta)=V(\theta) / n$, and $V(\theta)=1$ if $\theta \neq 0$ and $V(\theta)=t^{2}$ if $\theta=0$.

