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0 Introduction

Let G be a finite group, let K be a field, and let V be
a finite-dimensional vector space over K. Denote by
GL(V ) the group of invertible linear transformations
from V to itself. A group homomorphism ρ : G →
GL(V ) is called a linear K-representation of G in
V (or just a representation of G for short).

One gains information about the structure of G
by studying the totality of representations of G (i.e.,
various ρ, V , and K).

Example. Suppose K = C. If every “irreducible”
representation of G (that is, one admitting no proper
“subrepresentation”) is of the form ρ : G → GL(V )
with dimV = 1, then G is abelian (and conversely).
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Here are some notable applications of representa-
tion theory:

(1) (Burnside) If |G| = paqb (p, q prime), then G
is solvable. (Proof given in Section 25.)

(2) (Feit-Thompson) Every group of odd order is
solvable.

(3) Classification of Finite Simple Groups. (Proof
uses both the “ordinary” theory (charK =
0) and the “modular” theory (charK = p,
prime).)

(4) Quantum mechanics.

Let ρ : G→ GL(V ) be a representation. Define the
associated character χ : G → K by χ(a) = tr ρ(a).
By passing from ρ to the associated character χ, one
loses information in general, but enough information
is retained to allow proofs of important results. For
instance, the theorem of Burnside stated above uses
only characters, not actual representations. Much of
the power of character theory comes from its deep
connections with number theory.

Let KG denote the group ring of G over K (so KG
is the vector space over K with basis G made into a
ring by using the obvious multiplication). Given a
representation ρ : G → GL(V ) we can make V into
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a KG-module by putting a · v = ρ(a)(v) (a ∈ G,
v ∈ V ) and extending this definition linearly to an
arbitrary element of KG. It turns out that the study
of representations of G over the field K is equivalent
(in the category sense) to the study of KG-modules.
This brings into representation theory certain aspects
of homological algebra and K-theory.

In summary, representation theory involves three
interrelated notions: (1) representations, (2) charac-
ters, (3) modules.
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1 Modules

Let R be a ring with identity 1. A (left) R-module
is an (additive) abelian group M with a function R×
M → M denoted (r,m) 7→ rm (or sometimes r ·m)
such that the following hold for all r, s ∈ R,m,n ∈M :

(1) r(m+ n) = rm+ rn,
(2) (r + s)m = rm+ sm,
(3) (rs)m = r(sm),
(4) 1m = m.

One proves for R-modules the natural identities,
like r0 = 0 for any r ∈ R. (Proof: r0 = r(0 + 0) =
r0 + r0; now cancel.)
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Example. If V is a vector space over a field K, then
V is a K-module.

Example. If A is an additive abelian group, then A
is a Z-module, where ra (r ∈ Z, a ∈ A) has the usual
meaning.

Example. Let V be a vector space over the field K
and let R be the ring of linear transformations from
V to itself. Then V is an R-module by f · v = f(v).

Example. Any ring R (with 1) is an R-module with
rs (r, s ∈ R) being the given ring multiplication.

Warning: If V is a vector space over the field K,
then αv = 0 implies v = 0 or α = 0 (α ∈ K, v ∈ V )
since if α ̸= 0, then v = α−1αv = α−10 = 0. This
property does not hold for modules in general. For
instance, let v = 1̄ ∈ Z2 and α = 2 ∈ Z. Then
2 · 1̄ = 2̄ = 0̄, but 1̄ ̸= 0 and 2 ̸= 0. Furthermore, an
arbitrary module need not have a basis.

LetM be an R-module. A subset N ofM is an R-
submodule (written N ≤M) if the following hold:

(1) N is a subgroup of M ,
(2) rn ∈ N for all r ∈ R, n ∈ N .
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LetM andM ′ be R-modules. A function φ :M →
M ′ is an R-homomorphism if the following hold for
all m,n ∈M , r ∈ R:

(1) φ(m+ n) = φ(m) + φ(n),
(2) φ(rm) = rφ(m).

AnR-isomorphism is a bijectiveR-homomorphism.
We say that the R-modules M and M ′ are isomor-
phic, writtenM ∼=M ′, if there exists anR-isomorphism
φ :M →M ′.

If φ : M → M ′ is an R-homomorphism, then
kerφ := φ−1(0) and imφ := φ(M) are submodules
of M and M ′, respectively.

If M is an R-module and N ≤ M , then M/N :=
{m+N |m ∈M} is a module with the induced oper-
ations:

(m+N) + (m′ +N) = (m+m′) +N,

r(m+N) = rm+N.

M/N is called the quotient (or factor) module of
M by N .

1.1 (First Isomorphism Theorem) If φ :M →
M ′ is an R-homomorphism, then
M/ kerφ ∼= imφ.
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The usual second and third isomorphism theorems are
valid as well. In fact, these isomorphism theorems
are valid for any Ω-group. (Let Ω be a nonempty
set. An Ω-group is a group G with a function Ω ×
G→ G for which x(ab)=(xa)(xb) for all x ∈ Ω, a, b ∈
G. There are obvious notions of Ω-subgroup and Ω-
homomorphism. An R-module M is an Ω-group with
Ω = R and G =M .)

Let N1 and N2 be R-modules. The direct sum

N1 ⊕N2 = {(n1, n2) |ni ∈ Ni}

is an R-module if we define r(n1, n2) = (rn1, rn2).

Let M be an R-module and let N1, N2 ≤ M . We
say that M is the (internal) direct sum of N1 and
N2 (written M = N1+̇N2) if the following hold:

(1) M = N1 +N2,
(2) N1 ∩N2 = {0}.

1.2 If M = N1+̇N2, then M ∼= N1 ⊕N2.

Proof. The pairing n1 + n2 ↔ (n1, n2) is the re-
quired correspondence. �
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Exercise 1

Let M be an R-module and let N ≤ M . Prove that if

φ : M → N is a homomorphism such that φ(n) = n for all

n ∈ N , then M = N+̇ kerφ.
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2 The Group Algebra

Let G be a finite group and let K be a field (notation
in force from here on). Denote by KG the vector
space over K with basis G. So the elements of KG
are linear combinations of the form

∑
a∈G αaa with

αa ∈ K. We wish to make KG into a ring, so we
define multiplication by(∑

a∈G

αaa
)(∑
b∈G

βbb
)
=
∑
a,b∈G

(αaβb)ab.

Note that KG has identity 1e, where e is the identity
element of the group G. We usually write 1a as just
a (a ∈ G) and thus view G as a subset of KG.

Example. Suppose G = S4 (=symmetric group) and
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K = Q. Then the following is an example of a com-
putation in KG.

[3(23) + (1243)] [7(24)− 5(13)]

= 21(23)(24)− 15(23)(13) + 7(1243)(24)− 5(1243)(13)

= 21(243)− 15(123) + 7(123)− 5(243)

= 16(243)− 8(123).

A K-algebra is a ring A that is also a vector space
over K subject to α(ab) = (αa)b = a(αb) for all α ∈
K and all a, b ∈ A.

Example. The ring KG is a K-algebra of dimension
|G|. It is called the group algebra of G over K.

Example. If V is a vector space over K, then the
ring End(V ) of linear maps from V to itself is a K-
algebra.

Example. The ring Matn(K) of n× n matrices over
K is a K-algebra of dimension n2.

Example. The ring K[x] of polynomials over K is
an infinite-dimensional K-algebra.
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Let A be a K-algebra with identity 1 ( ̸= 0). We
get a ring monomorphism K → A via α 7→ α1. (It is
nonzero since it sends the identity of K to the iden-
tity of A. It is injective since its kernel is an ideal
of the field K and is therefore trivial.) We use this
monomorphism to view K as a subring of A.

KG-modules. Let V be a vector space over K. A
map G × V → V by (a, v) 7→ av is called a group
action of G on V if the following hold for all a, b ∈ G,
v, w ∈ V , and α ∈ K:

(1) (ab)v = a(bv),
(2) ev = v,
(3) a(v + w) = av + aw,
(4) a(αv) = α(av).

(The first two properties say that the given map de-
fines an action of the group G on the underlying set
of the vector space V , while the last two properties
say that each element of G acts as a linear operator
on V .)

Let V be a KG-module. By restricting the scalars
fromKG toK, we can view V as aK-module, that is,
as a vector space over K. It follows from the module
axioms that restricting scalars from KG to G yields
a group action G× V → V of G on V . The following



2 The Group Algebra 12

result says that, conversely, a group action of G on a
vector space V induces a KG-module structure on V .

2.1 Let V be a vector space over K and let G ×
V → V be a group action of G on V . Then V is a
KG-module with scalar multiplication given by(∑

a∈G

αaa

)
v =

∑
a∈G

αaav.

(This scalar multiplication is said to be “extended
linearly” from the action of G on V .)

Proof. We verify only module axiom (3), namely
(rs)v = r(sv) (r, s ∈ KG, v ∈ V ), since the verifi-
cations of the other axioms are straightforward. Let
r, s ∈ KG so that r =

∑
a αaa and s =

∑
b βbb ∈ KG

for some αa, βb ∈ K. For any v ∈ V , we have

(rs)v =

(∑
a,b

αaβb(ab)

)
v

=

(∑
c

( ∑
a,b

ab=c

αaβbc
))
v (collect like terms)
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=
∑
c

( ∑
a,b

ab=c

αaβb
)
cv (linear extension)

=
∑
c

∑
a

αaβa−1ccv

=
∑
a

αa
(∑

c

βa−1ccv
)

=
∑
a

αa
(∑

b

βb(ab)v
)

(b = a−1c)

=
∑
a

αa
(∑

b

βba(bv)
)

((1) of group action)

=
∑
a

αaa
(∑

b

βbbv
)

((3) and (4) of group action)

=
(∑

a

αaa
)((∑

b

βbb
)
v

)
(linear extension, twice)

= r(sv),

so module axiom (3) holds. �
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3 Tensor Product and Contra-
gredient

Recall (Section 2) that anyKG-module can be viewed
as a vector space over K. For us, KG-modules will
always be assumed to be finite-dimensional (over K)
when viewed thus. Here, we look at two ways of con-
structing new KG-modules from old ones.

Tensor Product. Let V and W be KG-modules
with bases {v1, . . . , vm} and {w1, . . . , wn}, respectively.
Let V ⊗W be the vector space with basis {vi⊗wj | 1 ≤
i ≤ m, 1 ≤ j ≤ n}. V ⊗W is the tensor product of
V and W .

For arbitrary v ∈ V , w ∈ W , write v =
∑
i αivi,

w =
∑
j βjwj and define v ⊗ w =

∑
i,j αiβjvi ⊗ wj ∈
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V ⊗W . (Caution: It is not the case that every element
of V ⊗W can be expressed in the form v ⊗ w with
v ∈ V and w ∈W .)

3.1 For all v, v′ ∈ V , w,w′ ∈W , and α ∈ K, we
have

(1) (v + v′)⊗ w = v ⊗ w + v′ ⊗ w,
(2) v ⊗ (w + w′) = v ⊗ w + v ⊗ w′,
(3) α(v ⊗ w) = (αv)⊗ w = v ⊗ (αw).

For a ∈ G, the map of basis vectors given by vi ⊗
wj 7→ avi ⊗ awj extends uniquely to a linear map
from V ⊗ W to itself, which we denote by u 7→ au
(u ∈ V ⊗ W ). Then (a, u) 7→ au defines a group
action of G on the vector space V ⊗ W (note that
once properties (3) and (4) are checked it suffices to
verify properties (1) and (2) under the assumption
that v is a basis vector). According to 2.1 the linear
extension to KG of this action gives V the structure
of KG-module.

Contragredient. Let V be a KG-module and set
V ∗ = {f : V → K | f is linear}. V ∗ is the dual space
of V . For a ∈ G and f ∈ V ∗, the function af : V → K
defined by (af)(v) = f(a−1v) is an element of V ∗.
Then the map (a, f) 7→ af defines a group action of
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G on the vector space V ∗. According to 2.1 the linear
extension to KG of this action gives V ∗ the structure
of KG-module. This module is the contragredient
of V . We have V ∼= V ∗∗ via v 7→ (f 7→ f(v)).

Remark. These two constructions are available for
any Hopf algebra (of which the group algebra is an ex-
ample), but not for an arbitrary algebra. A Hopf alge-
bra A has a certain algebra homomorphism, △ : A→
A ⊗ A (comultiplication) and an algebra antihomo-
morphism σ : A→ A (antipode). In the case A = KG
we obtain these maps by putting △(a) = a ⊗ a and
σ(a) = a−1 (a ∈ G) and extending linearly to KG.
LetM andN be A-modules. ThenM⊗N is an A⊗A-
module by (a⊗b)(m⊗n) = am⊗bn (even without the
additional Hopf structure); it becomes an A-module
by putting a(m ⊗ n) = △(a)(m ⊗ n). Also, M∗ be-
comes an A-module by putting (af)(m) = f(σ(a)m).
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4 Representations and Modules

Let ρ : G → GL(V ) be a representation (Section 0).
Putting av = ρ(a)(v) (a ∈ G, v ∈ V ) we obtain a
group action of G on the vector space V . According
to 2.1, the linear extension to KG of this action gives
V the structure of KG-module.

Conversely, let V be a KG-module. Then V can
be viewed as a (finite-dimensional) vector space over
K. Define ρ : G→ GL(V ) by ρ(a)(v) = av. Then ρ is
a well-defined homomorphism, and hence a represen-
tation of G. We call ρ the representation afforded
by V .

We can use the language of categories to make the
correspondence described above more precise. Let
KG-mod denote the category having as objects KG-
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modules and as morphismsKG-homomorphisms. Let
G-rep denote the category having as objects repre-
sentations of G and morphisms described as follows:
Given objects ρ : G → GL(V ), ρ′ : G → GL(V ′),
the set Mor(ρ, ρ′) of morphisms from ρ to ρ′ con-
sists of those linear maps f : V → V ′ such that
f ◦ ρ(a) = ρ′(a) ◦ f for all a ∈ G.

We claim that the categories KG-mod and G-rep
are equivalent. Define a functor F : KG-mod→ G-
rep by

F :

{
V 7→ ρ, where ρ is afforded by V ,

f 7→ f, for a KG-homomorphism f : V → V ′.

We need to check that F (f) = f ∈ Mor(ρ, ρ′) =
Mor(F (V ), F (V ′)). Clearly f is linear. Also, for
v ∈ V we have

[f ◦ ρ(a)](v) = f(ρ(a)(v)) = f(av) = af(v)

= ρ′(a)(f(v)) = [ρ′(a) ◦ f ](v).

We also get a functor F ′ : G-rep→ KG-mod by

F ′ :

{
ρ : G→ GL(V ) 7→ V,

f 7→ f.
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It is easy to check that F ′ ◦F = 1KG-mod and F ◦
F ′ = 1G-rep, so that KG-mod∼= G-rep, as desired.

Exercise 2

Fill in the details of the “representation ↔ module” corre-

spondence outlined in the first two paragraphs of this sec-

tion.
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5 Matrix Representations

Let V be a vector space over the field K with (or-
dered) basis B = {v1, . . . , vn}. For v ∈ V we have
v =

∑
i βivi for uniquely determined βi ∈ K. Write

[v]B =

 β1...
βn


(the coordinate vector of v relative to B).

Let f : V → V be a linear transformation. For
v ∈ V we have

[f(v)]B = [αij ][v]B ,

where f(vj) =
∑
i αijvi (1 ≤ j ≤ n). We call [αij ]

the matrix of f relative to B.
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Now suppose ρ : G → GL(V ) is a representation
of G. For each a ∈ G, let [αij(a)] be the matrix of
ρ(a) relative to B. Then, denoting by GLn(K) the
group of invertible n × n-matrices over K, we get a
homomorphism R : G→ GLn(K) by putting R(a) =
[αij(a)]. R is called the matrix representation of
G afforded by ρ (or by V ) relative to B.

Example. Let G = Z3 = {0̄, 1̄, 2̄}. The vector space
V = KG is aKG-module (with module product being
the ring product in KG). The matrix representation
R of G afforded by V relative to the basis {0̄, 1̄, 2̄} is
given by

R(0̄) =

 1 0 0
0 1 0
0 0 1

 , R(1̄) =

 0 0 1
1 0 0
0 1 0

 , R(2̄) =

 0 1 0
0 0 1
1 0 0

 .
Notice that these are “permutation matrices” (exactly
one 1 appears in each row and each column with zeros
elsewhere).

In general, for any group G the matrix representa-
tion R of G afforded by KG relative to the basis G
has the property that R(a) is a permutation matrix
for each a ∈ G.
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Submodules. Let V be a KG-module and let W be
a submodule of V . Let {v1, . . . , vm} be a basis of W
and extend this to get a basisB = {v1, . . . , vm, vm+1, . . . , vn}
of V . If R is the corresponding matrix representation,
then for each a ∈ G, R(a) is of block form

R(a) =

[
∗ ∗
0 ∗

]
.

Let ρ be the representation of G afforded by V . For
each a ∈ G, we have ρ(a)(W ) = aW ⊆ W , so we
get a representation σ : G → GL(W ) by defining
σ(a) = ρ(a)|W (the subrepresentation of G af-
forded by the submodule W of V ). Relative to
the basis {v1, . . . , vm} ofW , σ affords the matrix rep-
resentation represented by the upper left block in the
depiction of R(a) above.

Keep the notation above and assume there exists
a submodule W ′ of V such that V = W +̇W ′. Also
assume that {vm+1, . . . , vn} is a basis for W ′. Then
B is still a basis for V and for each a ∈ G, R(a) is of
block form

R(a) =

[
∗ 0
0 ∗

]
.
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Tensor Products. Let V and W be KG-modules
with bases {v1, . . . , vm}, {w1, . . . , wn}, respectively.
Then {vi ⊗ wj} is a basis for V ⊗W . Order this set
lexicographically: {v1 ⊗w1, v1 ⊗w2, . . . , v2 ⊗w1, v2 ⊗
w2, . . . }. Let [αij ] and [βkl] be the matrix represen-
tations afforded by V and W , respectively, relative
to the given bases. We wish to determine the matrix
representation [γij,kl] afforded by V ⊗W relative to
the above basis. By definition, for each a ∈ G, we
have

a(vk ⊗ wl) =
∑
i,j

γij,kl(a)vi ⊗ wj .

But also,

a(vk ⊗ wl) = avk ⊗ awl

=
(∑
i

αik(a)vi
)
⊗
(∑
j

βjl(a)wj
)

=
∑
i,j

αik(a)βjl(a)vi ⊗ wj .

Since {vi⊗wj} is linearly independent, we have γij,kl(a) =
αik(a)βjl(a). The matrix [γij,kl(a)] is called the ten-
sor (orKronecker) product of the matrices [αik(a)]
and [βjl(a)], written [αik(a)]⊗ [βjl(a)].
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Example.

[
1 2
3 4

]
⊗

 1 2 3
4 5 6
7 8 9

 =


1 2 3 2 4 6
4 5 6 8 10 12
7 8 9 14 16 18
3 6 9 4 8 12
12 15 18 16 20 24
21 24 27 28 32 36

 .

Exercise 3

Let V be a KG-module. Let [αij ] be the matrix represen-

tation of G afforded by V relative to the basis {v1, . . . , vn}.
Let [α∗

ij ] be the matrix representation of G afforded by the

contragredient module V ∗ (Section 3) relative to the “dual

basis” {v∗1 , . . . , v∗n} (so v∗i (vj) = δij = Kronecker delta).

Express [α∗
ij ] in terms of [αij ].
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6 Schur’s Lemma

From Section 8 on we will assume K = C. In this
section and the next, we see why this assumption sim-
plifies matters. We begin by reviewing “algebraically
closed fields” and “eigenvalues.”

Algebraically Closed Fields. The field K is al-
gebraically closed if each nonconstant f ∈ K[x]
(= set of polynomials in x over K) has a zero.

Example. The field R of real numbers is not alge-
braically closed since x2 + 1 has no zero.

Remark. If α is a zero of f ∈ K[x], then x −
α is a factor. (Proof: Use division algorithm.) So,
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using induction on the degree of f , we have that K
is algebraically closed if and only if each nonconstant
f ∈ K[x] can be written in the form f = α0(x −
α1)(x− α2) · · · (x− αn) (αi ∈ K).

6.1 Fundamental Theorem of Algebra. The
field C of complex numbers is algebraically closed.

Proof. The name given to this theorem is a bit of
a misnomer since there is no known “purely algebraic”
proof. Nor is it likely that there could be such since
the complex numbers are constructed from the real
numbers, which are defined as the completion of the
rational numbers, and so topology ultimately enters
in. Here is a quick proof using complex analysis.

Liouville’s Theorem states that every bounded en-
tire (i.e., differentiable) function f : C → C is con-
stant. Suppose f ∈ C[x] has no zero. Since |f(x)| →
∞ as |x| → ∞ and im f is bounded away from zero,
1/f is bounded (and clearly entire). Therefore, by
Liouville’s Theorem, 1/f is constant, so that f is as
well. �

Eigenvalues. Let V be a vector space over K and
let f : V → V be a linear transformation. An element
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α of K is an eigenvalue of f if f(v) = αv for some
nonzero v ∈ V . If the matrix A represents f relative
to some basis B of V , then

α ∈ K is an eigenvalue of f ⇐⇒ f(v) = αv for some v ̸= 0

⇐⇒ [f(v)]B = α[v]B for some v ̸= 0

⇐⇒ A[v]B = α[v]B for some v ̸= 0
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⇐⇒ (A− αI)[v]B = 0 for some v ̸= 0

⇐⇒ (A− αI) is not invertible

⇐⇒ det(A− αI) = 0,

⇐⇒ α is a zero of the polynomial g(x) = det(A− xI).

In particular, if K is algebraically closed, then each
linear transformation f : V → V has an eigenvalue.

Now that the background material has been re-
viewed, we turn to the main subject of the section.

A nonzero KG-module V is simple if it has no
(nonzero) proper submodule. If V is simple and it
affords the representation ρ, we say that ρ is irre-
ducible. In other words, a representation is irre-
ducible if it admits no (nonzero) proper subrepresen-
tation in the sense of Section 5.

6.2 Schur’s Lemma. Let V andW be simple KG-
modules and let f : V →W be a homomorphism.

(1) If V ̸∼=W , then f = 0.
(2) Assume K is algebraically closed. If V = W ,

then f = α1V for some α ∈ K (so f is a
“homothety”).
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Proof. (1) Assume f ̸= 0. Since ker f is a sub-
module of V not equal to V , we must have ker f = 0,
so that f is injective. Similarly, im f is a submod-
ule of W not equal to 0, so im f = W implying f is
surjective. Thus, V ∼=W .

(2) Assume V = W . Since K is assumed to be
algebraically closed, f has an eigenvalue, say α. Then
ker(f−α1V ) ̸= 0. Since V is simple, we get f−α1V =
0, whence f = α1V . �
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7 Maschke’s Theorem

Let R be a ring and let M be a nonzero R-module.
A sequence

0 =M0 < M1 < · · · < Mn =M

of submodules of M is called a composition se-
ries if each factor Mi/Mi−1 is simple (i.e., has no
proper (nonzero) submodule). If M has a composi-
tion series as above, then the simple factorsMi/Mi−1

(1 ≤ i ≤ n) are called the composition factors of
M . (By the Jordan-Hölder Theorem, which applies to
Ω-groups and hence to R-modules, composition fac-
tors are independent of the chosen composition series
and are hence well-defined.) It is possible to have two
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nonisomorphic modules with the same composition
factors.

Example. The Z-modules Z4 and Z2 ⊕ Z2 have re-
spective composition series

0 < ⟨2̄⟩ < Z4,

0 < ⟨(0̄, 1̄)⟩ < Z2 ⊕ Z2

and hence they both have the two composition factors
Z2, Z2. However, Z4 ̸∼= Z2 ⊕ Z2 (since, for instance,
2x = 0 for all x ∈ Z2 ⊕ Z2, but not for x = 1̄ ∈ Z4).

Suppose R has the property that every nonzero
R-module has a composition series and hence compo-
sition factors (which is the case for our main object
of study, R = KG, since we assume KG-modules to
be finite-dimensional over K). In this case, one can
determine all possible R-modules by first determin-
ing the simple ones and then determining all ways
these simple modules can be “stacked” to form new
modules. (This latter endeavor falls in the domain of
“homological algebra.” Given R-modules M and N ,
one studies the extension group Ext1(N,M), which is
an abelian group with the property that its elements
are in one-to-one correspondence with the R-modules
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having a submodule isomorphic toM and correspond-
ing factor module isomorphic to N . For the example
above, we have Ext1(Z2,Z2) ∼= Z2 = {0̄, 1̄}. The
element 1̄ corresponds to Z4 and the element 0̄ corre-
sponds to Z2 ⊕ Z2.)

Now supposeR has the property that every nonzero
R-module is isomorphic to a direct sum of finitely
many simple modules (which is the case for R = KG
when charK - |G|, as shown in the main result below).
In this case, each nonzero module has a composition
series and the composition factors are precisely the
various simple modules appearing in the correspond-
ing direct sum. Indeed, if M =

⊕n
i=1Mi with Mi

simple, then viewing Mi as a submodule of M in the
natural way and putting Ni =

∑
j≤iMj we get a com-

position series 0 = N0 < N1 < · · · < Nn = M with
Ni/Ni−1

∼= Mi. Therefore, in this case a nonzero
R-module is completely determined by its composi-
tion factors (implying that all R-modules are known
once the simple ones have been determined, i.e., the
“stacking problem” mentioned above is trivial). This
observation points up the importance of the following
result.

7.1 Maschke’s Theorem. If charK - |G|, then
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every KG-module is a direct sum of simple modules.

Proof. Let M be a KG-module and let N be a
submodule ofM . By induction on dimKM , it suffices
to show that N has a complement, i.e., that there
exists N ′ ≤ M with M = N+̇N ′. For this, it is
enough by Exercise 1 to find a KG-homomorphism
f :M → N such that f(n) = n for all n ∈ N .

Let V ⊆M be a vector space complement of N , so
that M = N+̇V as vector spaces. Let π :M → N be
the projection onto the first summand: π(n+ v) = n
(n ∈ N , v ∈ V ).

Since charK - |G|, |G| is nonzero when viewed as
an element of K. Hence, it makes sense to define
f :M → N by

f =
1

|G|
∑
a∈G

a−1πa

(meaning f = 1
|G|
∑
a∈G ρ(a

−1) ◦ π ◦ ρ(a), where ρ is

the representation afforded by M).

We will show that f is a homomorphism. First, f
is clearly linear, so it is enough to show that f(bm) =
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bf(m) for all b ∈ G, m ∈M . We have

f(bm) =
1

|G|
∑
a∈G

a−1πa(bm) =
1

|G|
∑
a∈G

b(ab)−1π(ab)m

= b
1

|G|
∑
c∈G

c−1πcm

= bf(m),

so f is a homomorphism, as desired.
Finally,

f(n) =
1

|G|
∑
a

a−1πan =
1

|G|
∑
a

a−1π(an) =
1

|G|
∑
a

a−1an = n

and the proof is complete. �
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8 Characters

From now on, we restrict our attention to the field
K = C so that both Schur’s Lemma and Maschke’s
Theorem apply. (Actually, for fixedG we could choose
any algebraically closed field of characteristic not di-
viding |G| and get essentially the same theory.)

Let A = [αij ] be an n × n-matrix over C. The
trace of A is defined by trA =

∑n
i=1 αii. We first

establish some standard facts about the trace.

8.1 For any n × n-matrices A and B, we have
tr(AB) = tr(BA).

Proof. Let A = [αij ] and B = [βij ] be n × n-
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matrices. We have

tr(AB) = tr
[∑

k

αikβkj
]
=
∑
i

∑
k

αikβki =
∑
k

∑
i

βkiαik

= tr
[∑

i

βkiαil
]
= tr(BA). �

8.2 For n× n-matrices A and C with C nonsin-
gular, we have tr(C−1AC) = trA.

Proof. This follows directly from 8.1. �

8.3 If A is an n×n-matrix, then trA =
∑n
i=1 λi,

where the λi are the zeros of the polynomial g(x) =
det(xI −A) repeated according to multiplicity.

Proof. Let A = [αij ] be an n × n-matrix. By
definition,

g(x) =
∑
σ∈Sn

sgn(σ)b1σ(1) · · · bnσ(n),

where sgn(σ) is 1 or −1 according as σ is even or odd,
and bij = δijx− αij . If σ ̸= 1, then σ moves at least
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two numbers, whence b1σ(1) · · · bnσ(n) is of degree at
most n− 2 in x. Thus,

g(x) =
∏
i

bii+h1(x) =
∏
i

(x−aii)+h1(x) = xn−
∑
i

aiix
n−1+h2(x),

where hi(x) has degree at most n − 2. But we also
have

g(x) =
∏
i

(x− λi) = xn −
∑
i

λix
n−1 + h3(x),

where h3(x) has degree at most n− 2. Hence, trA =∑
i aii =

∑
i λi, as desired. �

Remark. In the notation of 8.3, v 7→ Av defines a
linear transformation from Cn to Cn; the result says
that trA equals the sum of the eigenvalues (repeated
according to multiplicity) of this linear transforma-
tion (in short, the eigenvalues of A). We also point
out that 8.3 follows immediately from 8.2 and the the-
orem from linear algebra that says A is similar to a
matrix in Jordan canonical form.

Now let V be a vector space over C and let f :
V → V be a linear map. Define tr f = trA, where A
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is the matrix of f relative to some basis B of V . By
8.2, tr f is well-defined, for if a different basis B′ is
chosen, then the matrix of f relative to B′ is C−1AC,
where C is the change of basis matrix that changes
B′ coordinates to B coordinates.

Assume V is a CG-module and let ρ be the repre-
sentation it affords. The map χ : G → C defined by
χ(a) = tr ρ(a) is the character of G afforded by V
(or by ρ).

8.4 Let V1 and V2 be CG-modules and let χ1 and
χ2, respectively, be the characters they afford. Then

(1) V1 ⊕ V2 affords the character χ1 + χ2,
(2) V1 ⊗ V2 affords the character χ1χ2.

Proof. (1) Let Ri be the matrix representation
of G afforded by Vi relative to the basis Bi (i = 1, 2).
Then, viewing V1 as a subspace of V = V1 ⊕ V2 by
identifying v1 with (v1, 0), and similarly for V2, we
have that B = B1 ∪ B2 is a basis for V . The matrix
representation R of G afforded by V relative to B is
easily seen to satisfy

R(a) =

[
R1(a) 0

0 R2(a)

]
.
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So if χ is the character afforded by V , then χ(a) =
trR(a) = trR1(a) + trR2(a) = χ1(a) + χ2(a).

The proof of (2) is similar. �

Next, we assemble some standard facts about char-
acters.

8.5 Let V be a CG-module and let χ be the char-
acter it affords.

(1) χ(e) = dimC V .
(2) For each a ∈ G, χ(a) is a sum of roots of

unity.
(3) For each a ∈ G, χ(a−1) = χ(a), where bar

indicates complex conjugate (a+ bi = a− bi).
(4) For each a, g ∈ G, χ(g−1ag) = χ(a).

Proof. (1) Let ρ be the representation afforded
by V . We have χ(e) = tr ρ(e) = tr 1V = tr In = n,
where n = dimC V .

(2) Let ρ be as above and let a ∈ G. If λ is an
eigenvalue of ρ(a), then for some 0 ̸= v ∈ V we have
ρ(a)(v) = λv. Hence

λmv = ρ(a)m(v) = ρ(am)(v) = ρ(e)(v) = v,

where m is the order of a. This implies λm = 1, so
that λ is anmth root of unity. Finally, χ(a) = tr ρ(a),
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which by 8.3 is the sum of the eigenvalues of ρ(a) and
hence a sum of roots of unity.

(3) Let a ∈ G. With ρ, λ, and v as above, we have

ρ(a−1)(v) = ρ(a)−1(v) = λ−1v.

Hence, λ is an eigenvalue of ρ(a) if and only if λ−1 is
an eigenvalue of ρ(a−1). Furthermore, by the proof
of (2), |λ| = 1, so the equation λλ = |λ|2 = 1 gives
λ−1 = λ. As in 8.3, we have

χ(a−1) = tr ρ(a−1) =
∑
i

λi =
∑
i

λi = tr ρ(a) = χ(a).

(4) Let a, g ∈ G and let ρ be as above. Using 8.2,
we have

χ(g−1ag) = tr ρ(g−1ag) = tr
[
ρ(g)−1ρ(a)ρ(g)

]
= tr(C−1AC) = trA = tr ρ(a) = χ(a),

where A and C are the matrices of ρ(a) and ρ(g),
respectively, relative to some basis of V . �

Exercise 4
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Let U and V be CG-modules and set W = HomC(U, V ) (=

set ofC-linear maps from U to V ). Since V is a vector space,

W becomes a vector space in the natural way. We could also

use the CG action on V to make W into a CG-module, but

instead we define (af)(u) = a(f(a−1u)) (a ∈ G, f ∈ W ,

u ∈ U) and extend linearly to CG.

(a) This operation makes W into a CG-module. Verify

only the following step: (ab)f = a(bf) (a, b ∈ G, f ∈ W ).

(b) Prove that W ∼= U∗ ⊗ V as CG-modules.

(c) Explain how this construction generalizes the notion

of a contragredient module (Section 3).

(d) Express the character afforded by W in terms of the

characters afforded by U and V , respectively.
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9 Orthogonality Relations

The set Fun(G,C) of all functions from G to C in-
herits from C the structure of vector space over C.
In this section we define an inner product on this
space and show that the set of irreducible characters
of G (i.e., those characters afforded by simple CG-
modules) forms an orthonormal set relative to this
inner product.

The main lemma is the following result. Note that
the characteristic of C being zero allows the division
by |G| in the statement of the result, and also notice
that the fact C is algebraically closed (6.1) allows the
use of Schur’s lemma in the proof.

9.1 Let V and V ′ be CG-modules and let f : V →
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V ′ be a linear map. Set

f0 =
1

|G|
∑
a∈G

a−1fa : V → V ′.

(1) f0 is a CG-homomorphism.
(2) Assuming V and V ′ are simple, we have

f0 =

{
0, V ′ ̸∼= V,

tr f

n
1V , V ′ = V,

where n = dimC V .

Proof. (1) This proof is similar to that of Maschke’s
theorem (7.1).

(2) By part (1) and Schur’s Lemma (6.2), if V ̸∼=
V ′, then f0 = 0 and if V ′ = V , then f0 = α1V for
some α ∈ C. We have

α·n = tr f0 =
1

|G|
∑
a∈G

tr(a−1fa) =
1

|G|
∑
a∈G

tr f = tr f,

so α = (tr f)/n, as desired. �
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Given two functions φ,ψ : G→ C, set

⟨φ,ψ⟩ = 1

|G|
∑
a∈G

φ(a−1)ψ(a).

9.2 Let V and V ′ be simple CG-modules and let
R = [αij ] and R

′ = [α′
ij ], respectively, be the matrix

representations they afford (relative to chosen bases).
Then for all i, j, k, and l, we have

⟨α′
ij , αkl⟩ =

{
0, V ′ ̸∼= V,
1
nδilδjk, V ′ = V.

Proof. Let n = dimC V and n′ = dimC V
′. Fix

j and k and let C be the n′ × n-matrix defined by
C = [δxjδyk]xy, where the final subscripts indicate
that the row index is x and the column index is y.
Now C can be viewed as the matrix relative to the
chosen bases of a linear transformation f : V → V ′.
Therefore, 9.1 implies

1

|G|
∑
a∈G

R′(a−1)CR(a) =

 [0], V ′ ̸∼= V,

trC

n
In, V ′ = V,
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where In denotes the n× n identity matrix. The left
hand side of this formula becomes

1

|G|
∑
a∈G

[∑
x,y

α′
ix(a

−1)δxjδykαyl(a)

]
il

=

[
1

|G|
∑
a∈G

α′
ij(a

−1)αkl(a)

]
il

=
[
⟨α′
ij , αkl⟩

]
il
.

Since trC =
∑
x δxjδxk = δjk, we have

[
⟨α′
ij , αkl⟩

]
il
=

{
[0], V ′ ̸∼= V,[
1
nδjkδil

]
il
, V ′ = V.

An il-entry comparison finishes the proof. �

The set Fun(G,C) of functions from G to C is
regarded as a vector space over C in the usual way.
The pairing

(φ,ψ) =
1

|G|
∑
a∈G

φ(a)ψ(a)

defines an “inner product” on Fun(G,C), meaning,
for all φ,φ′, ψ, ψ′ ∈ Fun(G,C), α ∈ C,

(1) (φ+ φ′, ψ) = (φ,ψ) + (φ′, ψ)
(2) (φ,ψ + ψ′) = (φ,ψ) + (φ,ψ′)
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(3) (αφ,ψ) = α(φ,ψ)
(4) (φ, αψ) = α(φ,ψ)

(5) (φ,ψ) = (ψ,φ)
(6) (φ,φ) ≥ 0 with equality if and only if φ = 0.

(Note that some of these axioms are redundant. For
instance, (2) follows from (1) and (5).)

9.3 If χ and χ′ are characters, then (χ, χ′) =
⟨χ, χ′⟩.

Proof. By 8.5(3),

(χ, χ′) =
1

|G|
∑
a∈G

χ(a)χ′(a) =
1

|G|
∑
a

χ(a)χ′(a−1) = ⟨χ, χ′⟩. �

9.4 Let V and V ′ be simple CG-modules afford-
ing the characters χ and χ′, respectively. Then

(χ, χ′) =

{
1, V ∼= V ′

0, V ̸∼= V ′.

Proof. With the notation as in 9.2, we have

(χ, χ′) = ⟨χ, χ′⟩ = ⟨
∑
i

αii,
∑
j

α′
jj⟩ =

∑
i,j

⟨αii, α′
jj⟩,
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where we have used 9.3. First suppose V ∼= V ′. Then
χ = χ′ (see Exercise 5 below), so we may assume
V = V ′. Then 9.2 implies that

(χ, χ′) =
∑
i,j

1

n
δijδij =

∑
i

1

n
= 1.

Finally, if V ̸∼= V ′, then 9.2 implies ⟨αii, α′
jj⟩ = 0, so

(χ, χ′) = 0. �

9.5 Let V1, . . . , Vt be pairwise nonisomorphic sim-
ple CG-modules affording the characters χ1, . . . , χt,
respectively, and letm1, . . . ,mt ∈ N. Set V =

⊕
imiVi,

where miVi means Vi⊕· · ·⊕Vi (mi summands) and let
χ be the character afforded by V . Then mi = (χ, χi)
for all 1 ≤ i ≤ t.

Proof. By 8.4, χ =
∑
jmjχj , so (χ, χi) =

∑
jmj(χj , χi) =

mi, by 9.4. �

ByMaschke’s Theorem (Section 7), anyCG-module
is isomorphic to a direct sum of simple modules. More-
over, according to 9.5, the number of times a given
simple module appears is independent of the decom-
position. (Actually, we already knew this from the
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Jordan-Hölder theorem. See the remarks in Section
7.)

9.6 Let V and V ′ be CG-modules affording the
characters χ and χ′, respectively. Then χ = χ′ if and
only if V ∼= V ′.

Proof. First suppose χ = χ′. We can write V ∼=⊕t
i=1miVi and V

′ ∼=
⊕t

i=1m
′
iVi, where V1, . . . , Vt are

pairwise nonisomorphic simple modules. If Vi affords
the character χi, then 9.5 implies mi = (χ, χi) =
(χ′, χi) = m′

i for all i.

The converse is Exercise 5 below. �

The character afforded by a simple module is called
irreducible. We denote the set of all irreducible
characters of G by Irr(G).

In the next result, we use the terminology that a
subset X of Fun(G,C) is orthonormal if (φ,ψ) =
δφψ for all φ,ψ ∈ X.

9.7 Irr(G) is orthonormal.

Proof. Use 9.4 and 9.6. �
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9.8 There are only finitely many pairwise non-
isomorphic simple CG-modules.

Proof. First, Irr(G) is linearly independent. In-
deed, if

∑
i αiχi = 0 (αi ∈ C, χi ∈ Irr(G)), then 9.7

implies αj = (
∑
αiχi, χj) = 0 for each j. Also, if for

a ∈ G we define fa : G → C by fa(b) = δab, then
{fa | a ∈ G} clearly spans Fun(G,C). In particular,
we have | Irr(G)| ≤ dimC Fun(G,C) ≤ |G|. �

Remark. Here is another proof of 9.8 not using
character theory. Let S be a simple module and
choose 0 ̸= x ∈ S. The map φ : CG → S given by
φ(r) = rx is a CG-epimorphism. Hence S is isomor-
phic to a quotient of the CG-module CG. Now CG
is finite-dimensional (dimC CG = |G|), so CG has a
composition series. Clearly, S is a composition factor
of CG. Since CG has only finitely many composition
factors, the corollary follows.

Exercise 5

Let V and V ′ be isomorphic CG-modules. Prove that the

characters they afford are equal.
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10 The Number of Simple Mod-
ules

In the last section, we found that there are only finitely
many simple CG-modules (up to isomorphism). In
this section, we show that the number of simple mod-
ules is precisely the number of conjugacy classes of
G.

Recall that a, b ∈ G are conjugate if b = g−1ag
for some g ∈ G. Conjugacy is an equivalence relation
on G and hence the equivalence classes (called con-
jugacy classes) partition G. A function f : G → C
is a class function if it is constant on conjugacy
classes, that is, f(g−1ag) = f(a) for all a, g ∈ G. Let
Cl(G) ⊆ Fun(G,C) be the set of all class functions on
G. By 8.5(4), χ ∈ Cl(G) for any character χ of G. In
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particular, Irr(G) ⊆ Cl(G). By 9.7, Irr(G) is linearly
independent. We wish to show that, in fact, Irr(G) is
a basis for Cl(G). First, a lemma.

10.1 Let V be a simple CG-module affording the
character χ. Let f ∈ Cl(G) and define h =

∑
a∈G f(a)a :

V → V . Then h = |G|
n (f, χ̄)1V , where n = dimC V .

Proof. We first show that h is aCG-homomorphism.
Since h is clearly linear, it suffices to show that h(bv) =
bh(v) for all b ∈ G, v ∈ V . We have

h(bv) =
∑
a∈G

f(a)a(bv) =
∑
a

f(a)bb−1abv

= b
∑
a

f(b−1ab)b−1abv = b
∑
c∈G

f(c)cv = bh(v).

By Schur’s Lemma (6.2), we have h = α1V for some
α ∈ C. But

αn = trh =
∑
a∈G

f(a)χ(a) = |G|(f, χ̄),

so the result follows. �
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10.2 Irr(G) is a basis for Cl(G).

Proof. By 9.7, it is enough to show that Irr(G)
spans Cl(G), and for this, it suffices to show that
the orthogonal complement of ⟨Irr(G)⟩ is zero. So let
f ∈ Cl(G) and assume (χ, f) = 0 for all χ ∈ Irr(G).

Let V = CG and set h =
∑
a∈G f(a)a : V → V . If

S is a simple submodule of V affording the character
χ, then 10.1 says that the restriction of h to S equals
|G|
n (f̄ , χ̄)1S , where n = dimC S. Since (f̄ , χ̄) = (χ, f),
this restriction is 0. Now V is a direct sum of simple
modules by Maschke’s Theorem (7.1), so h : V → V

is the zero map. Hence,
∑
a f(a)a = h(e) = 0. This

implies that f̄ (and therefore f) is 0. �

If C is a conjugacy class of G and f ∈ Cl(G), we de-
fine f(C) := f(a), where a is any element of C. This
notation is clearly well-defined. (We get agreement
with the usual meaning of f(C) as {f(a) | a ∈ C} pro-
vided we are willing to identify the number f(a) ∈ C
with the set {f(a)}.)

10.3 The number of isomorphism classes of sim-
ple CG-modules equals the number of conjugacy classes
of G.
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Proof. Let C1, . . . , Ct be the distinct conjugacy
classes of G so that, in particular, G = ∪̇iCi. For
each i, let fi ∈ Cl(G) be defined by fi(Cj) = δij .
Then {fi | 1 ≤ i ≤ t} is a basis for Cl(G). Indeed,
if
∑
i αifi = 0 (αi ∈ C), then αj =

∑
i αifi(Cj) =

0, so the set is linearly independent. Also, if f ∈
Cl(G), then f =

∑
i f(Ci)fi, so the set spans. Now

9.6 implies that the number of isomorphism classes of
simple CG-modules is | Irr(G)|, and then 10.2 implies
| Irr(G)| = dimC Cl(G). By what we have just shown,
dimC Cl(G) is t, the number of conjugacy classes of
G. �
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11 Further Orthogonality Rela-
tions

Let C1, . . . , Ct be the distinct conjugacy classes of G
and let χ1, . . . , χt be the distinct irreducible charac-
ters of G (cf. 10.3).

11.1
∑
k χk(Ci)χk(Cj) =

|G|
|Cj |

δij.

Proof. As in the proof of 10.3, for each 1 ≤ j ≤ t,
let fj ∈ Cl(G) be given by fj(Ci) = δij . By 10.2,
fj =

∑
k αkχk for some αk ∈ C. Note that

αk = (
∑
i

αiχi, χk) = (fj , χk) =
1

|G|
∑
a∈G

fj(a)χk(a) =
|Cj |
|G|

χk(Cj),
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so fj =
|Cj |
|G|
∑
k χk(Cj)χk. Evaluation at Ci gives the

result. �

If χ is a character of G afforded by the CG-module
V , then according to 8.5, χ(e) = dimC V . The num-
ber χ(e) is called the degree of χ. For each 1 ≤ i ≤ t,
set ni = χi(e).

11.2
t∑
i=1

n2i = |G|.

Proof. If C1 = {e}, then∑
i

n2i =
∑
i

χi(e)χi(e) =
∑
i

χi(C1)χi(C1) = |G|,

the last equality from 11.1. �

11.3 G is abelian if and only if every simple CG-
module is one-dimensional.

Proof. Assume G is abelian. Then every con-
jugacy class of G is a singleton, implying G has |G|
conjugacy classes. In view of 11.2, this implies ni = 1
for all i. The converse is similar. �
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Exercise 6

Prove that the number of irreducible characters of G of de-

gree 1 equals the index in G of its commutator subgroup

G′.
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12 The Character Table

As in the last section, let C1, . . . , Ct be the conju-
gacy classes of G and let χ1, . . . , χt be the irreducible
characters. We always assume that C1 = {e} and
that χ1 is the “trivial character” given by χ1(a) = 1
for all a ∈ G. (Let V = C. The trivial homomor-
phism ρ : G → GL(V ) makes V into a CG-module.
This module is clearly simple since its dimension is 1.
The character afforded by V is the trivial character
as defined above.)

Set γij = χi(Cj). The matrix Γ = [γij ] is called
the character table of G.

Example. Assume G = Z4 = {0̄, 1̄, 2̄, 3̄}. By 10.3
and 11.3, there are four irreducible characters, each
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of degree one. Now, a character of degree one is af-
forded by a representation G → GL(C) and is there-
fore nothing more than a homomorphism G → C×.
Moreover, the image of this homomorphism is con-
tained in the set of fourth roots of unity which equals
⟨i⟩ = {1, i,−1,−i}, where i =

√
−1. Therefore, the

four irreducible characters are given by χk(j̄) = ikj ,
0 ≤ k ≤ 3. The character table is as follows:

0̄ 1̄ 2̄ 3̄

χ0 1 1 1 1
χ1 1 i −1 −i
χ2 1 −1 1 −1
χ3 1 −i −1 i

More generally, if G = ⟨a⟩ is cyclic of order n, then G
has n irreducible characters, each of degree one, given
by χi(a

j) = ωij (0 ≤ i, j < n), where ω = e2πi/n, and
the character table of G is [γij ] = [ωij ].

Remark. Of course, two isomorphic groups have
the same character table (up to permutations of rows
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and columns). However, the converse does not hold.
Indeed, we will see that the dihedral groupD4 and the
quaternion group Q8 have the same character table,
but D4 ̸∼= Q8 (Exercise 10).

Set ci = |Ci|. Here are the orthogonality relations
from Sections 9 and 11 in the new notation.

12.1 (Orthogonality Relations)

I.
∑
k ckγikγjk = |G|δij,

II.
∑
k γkiγkj =

|G|
cj
δij.

Example. To get a feel for the orthogonality rela-
tions, the reader could check to see that they hold for
the character table of Z4 given in the example above.
Here, we check the case of general cyclic G discussed
at the end of that example:

I. We have
∑
k ckγikγjk =

∑
k ω

ikω−jk =
∑
k(ω

i−j)k.
Now, in general, if 1 ̸= α ∈ C, then 1+α+α2+ · · ·+
αn−1 = 1−αn

1−α , which can be checked by multiplying
both sides by 1 − α. Considering the cases i = j
and i ̸= j separately, we get

∑n−1
k=0(ω

i−j)k = nδij =
|G|δij .
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II. Similarly,
∑
k γkiγkj =

∑
k ω

kiω−kj =
∑
k(ω

i−j)k =
|G|
cj
δij .

Example. Assume G = S3, the symmetric group on
three letters. First, in any symmetric group Sn, two
elements are conjugate if and only if they have the
same “cycle type,” that is, when written as products
of disjoint cycles, they have the same number of cycles
of length 2, of length 3, etc. Indeed, if σ, τ ∈ Sn
and σ = (i1, . . . , is), then τστ

−1 = (τ(i1), . . . , τ(is))
[Hungerford, p. 51], so the statement follows.

Therefore, S3 has three conjugacy classes: C1 =
{1}, C2 = {(12), (13), (23)}, C3 = {(123), (132)}. If
χ1, χ2, χ3 are the irreducible characters, then their
degrees ni satisfy n21 + n22 + n23 = |G| = 6 by 11.2.
Therefore, the degrees are 1, 1 and 2 and we may as-
sume the notation is chosen so that n1 = 1, n2 = 1,
and n3 = 2.

By convention, χ1 is the trivial character (χ1(a) =
1 for all a ∈ G). Next, χ2 is the “sign character”
(available for any symmetric group) given by

χ2(a) =

{
1, if a is even,

−1, if a is odd.

All we know about χ3 so far is that χ3(C1) = 2.
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We can use the orthogonality relations 12.1(II) to find
the remaining values:

0 =
∑
k

γk1γk2 = 1− 1 + 2χ3(C2),

0 =
∑
k

γk1γk3 = 1 + 1 + 2χ3(C3),

whence, χ3(C2) = 0 and χ3(C3) = −1. Therefore,
the character table is as follows:

C1 C2 C3

χ1 1 1 1
χ3 1 −1 1
χ3 2 0 −1

Incidentally, it can be shown that the irreducible char-
acter values of any symmetric group are always inte-
gers.

The statement of the orthogonality relations in 12.1
is probably the best suited for computations, but it
lacks symmetry and simplicity. For this reason, the
following might be of interest.
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A complex n × n-matrix is unitary if its conju-
gate transpose equals its inverse. This is the same
as saying that the rows (respectively, columns) of the
matrix form an orthonormal set with respect to the
standard inner product onCn: (αk)·(βk) =

∑
k αkβ̄k.

For 1 ≤ i, j ≤ t let γ′ij = γij
√

cj
|G| and put Γ′ =

[γ′ij ].

12.2 Γ′ is unitary.

Proof. Computing, we have

(row i) · (row j) =
∑
k

γ′ikγ
′
jk =

1

|G|
∑
k

ckγikγjk = δij ,

(col i) · (col j) =
∑
k

γ′kiγ
′
kj =

√
cicj

|G|
∑
k

γkiγkj = δij . �
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13 Direct Products

One of the most powerful tools in finite group theory
is induction (usually on the order of the group). So it
makes sense to try to relate the representation theory
of a group to that of its subgroups. This is what we
will be doing in the next several sections.

This relationship is easiest to describe if the chosen
subgroup has a complement, that is, if the group is
the direct product of two subgroups.

Let G1 andG2 be finite groups and throughout this
section assume G = G1 × G2 = {(a1, a2) | ai ∈ Gi}.
If Vi is a CGi-module, then V1 ⊗ V2 becomes a CG-
module by defining (a1, a2)(v1 ⊗ v2) = a1v1 ⊗ a2v2
and extending linearly.
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Remark. This is different from the tensor product
of modules we considered earlier, for in that case, V1
and V2 were both modules for the same algebra CH
and V1⊗V2 became a CH-module by defining h(v1⊗
v2) = hv1 ⊗ hv2. Here is the connection: This CH-
module V1 ⊗ V2 corresponds to a representation that
is really the composition H → H×H → GL(V1⊗V2),
where the first map is the diagonal map h 7→ (h, h)
and the second is the representation afforded by the
C(H ×H)-module as described above.

13.1 If χi is the character of Gi afforded by the
CGi-module Vi (i = 1, 2), then the map (χ1, χ2) :
G → C given by (χ1, χ2)(a1, a2) = χ1(a1)χ2(a2) is
the character of G afforded by V1 ⊗ V2.

Proof. The proof is similar to that of 8.4(ii). �

13.2 If χ is a character of a finite group, then χ
is irreducible if and only if ∥χ∥ = 1 (where ∥χ∥ :=
(χ, χ)1/2).

Proof. Let χ be a character of a finite group.
Write χ =

∑
i niχi, where {χi} are the distinct irre-

ducible characters of the group and the ni are non-
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negative integers. Then

∥χ∥2 =
∑
i,j

ninj(χi, χj) =
∑
i

n2i .

The result follows. �
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13.3 Irr(G) = Irr(G1)× Irr(G2).

Proof. Let (χ1, χ2) ∈ Irr(G1)× Irr(G2). Then

∥(χ1, χ2)∥2 =
1

|G|
∑

(a1,a2)

(χ1, χ2)(a1, a2)(χ1, χ2)(a1, a2)

=
1

|G|
∑

(a1,a2)

χ1(a1)χ2(a2)χ1(a1)χ2(a2)

=
1

|G1|
∑
a1

χ1(a1)χ1(a1) ·
1

|G2|
∑
a2

χ2(a2)χ2(a2)

= ∥χ1∥2∥χ2∥2

= 1,

so (χ1, χ2) ∈ Irr(G) by 13.1 and 13.2. Therefore,
Irr(G1)× Irr(G2) ⊆ Irr(G).

To show equality, it is enough, according to 11.2,
to show that the sum of the squares of the degrees of
the various (χ1, χ2) is |G|. We have,∑
(χ1,χ2)

[(χ1, χ2)(e1, e2)]
2 =

∑
χ1

(χ1(e1))
2·
∑
χ2

(χ2(e2))
2 = |G1||G2| = |G| �.
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14 A More General Tensor Prod-
uct

For the definition of an induced module in the next
section, we need a generalization of the notion of ten-
sor product of two vector spaces as introduced in Sec-
tion 3. The construction requires no special proper-
ties of the field, so we again work with an arbitrary
field K.

Let S be an algebra with identity over K. Let N
be a left S-module and let M be a right S-module
(so M is an abelian group equipped with a product
(m, s) 7→ ms (m ∈ M , s ∈ S) satisfying the right-
sided analogs of the four module axioms on p. 2). We
denote this situation by SN , MS .

Recall that M and N are vector spaces over K.
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Let {mi} and {nj} be bases ofM and N , respectively.
Then, as in Section 3,M⊗N denotes the vector space
over K with basis {mi⊗nj}. Also as in that section,
we put m⊗ n =

∑
i,j αiβjmi ⊗ nj for arbitrary m =∑

i αimi ∈ M and n =
∑
j βjnj ∈ N . With this

definition, it is easily checked that m⊗ n is linear in
each factor (meaning (m+m′)⊗n = m⊗n+m′⊗n,
(αm) ⊗ n = α(m ⊗ n), and similarly for the second
factor).

The vector spaceM⊗N can be regarded as a device
for changing bilinear maps into linear maps. Indeed,
if V is a vector space over K and if f : M ×N → V
is a bilinear map, then there is a unique linear map
f̄ : M ⊗ N → V satisfying f̄(m ⊗ n) = f(m,n).
(To see this, put f̄(mi ⊗ nj) = f(mi, nj), extend this
definition linearly to M ⊗N , and then show that the
desired formula holds.)

Let W be the subspace of M ⊗N generated by all
vectors of the form m ⊗ sn − ms ⊗ n with m ∈ M ,
n ∈ N , and s ∈ S and define

M ⊗S N =M ⊗N/W.

We denote the coset m⊗n+W by m⊗S n. Note that
m ⊗S n is linear in each factor and that m ⊗S sn =
ms⊗S n for all m ∈M , n ∈ N , and s ∈ S.
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14.1 Let MS, M
′
S, SN , SN

′ be S-modules as in-
dicated. There are vector space isomorphisms as fol-
lows:

(1) (M ⊕M ′)⊗S N ∼= (M ⊗S N)⊕ (M ′ ⊗S N),
(2) M ⊗S (N ⊕N ′) ∼= (M ⊗S N)⊕ (M ⊗S N ′),
(3) S ⊗S N ∼= N ,
(4) M ⊗S S ∼=M .

Proof. (1) One checks that the function (M ⊕
M ′)×N → (M ⊗S N)⊕ (M ′ ⊗S N) given by

((m,m′), n) 7−→ (m⊗S n,m′ ⊗S n)

is bilinear. Therefore, according to the comments
above, we get a unique linear map φ : (M⊕M ′)⊗N →
(M ⊗S N)⊕ (M ′ ⊗S N) satisfying

φ((m,m′)⊗ n) = (m⊗S n,m′ ⊗S n)

(m ∈ M , m′ ∈ M ′, n ∈ N). In particular, this for-
mula implies that for each s ∈ S

φ
(
(m,m′)s⊗ n− (m,m′)⊗ sn

)
= 0,

so φ induces a well-defined linear map φ̄ : (M ⊕
M ′)⊗S N → (M ⊗S N)⊕ (M ′ ⊗S N) satisfying

φ̄((m,m′)⊗S n) = (m⊗S n,m′ ⊗S n).
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Similarly, we get a linear map ψ̄ : (M⊗SN)⊕(M ′⊗S
N) → (M ⊕M ′)⊗S N satisfying

ψ̄((m⊗S n,m′ ⊗S n′)) = (m, 0)⊗S n+ (0,m′)⊗S n′.

One easily checks that ψ̄φ̄ = 1 and φ̄ψ̄ = 1. In partic-
ular, φ̄ is an isomorphism. The proof of (2) is similar.

(3) Proceed as above to get linear maps φ̄ : S ⊗S
N → N and ψ̄ : N → S ⊗S N satisfying φ̄(s⊗S n) =
sn and ψ̄(n) = 1 ⊗S n, and then check that both
compositions give the identity map. The proof of (4)
is similar. �

Let R and S be algebras with identity over K.
An (R,S)-bimodule is an abelian group M that is
both a left R-module and a right S-module such that
(rm)s = r(ms) for all r ∈ R, s ∈ S, m ∈ M . To
indicate such a bimodule, we write RMS .

Let RMS and SN be modules as indicated. The
vector space M ⊗ N becomes a left R-module if we
define r(m⊗ n) = (rm)⊗ n. As before, let W be the
subspace of M ⊗ N generated by all vectors of the
form m ⊗ sn −ms ⊗ n with m ∈ M , n ∈ N , s ∈ S.
ThenW is an R-submodule ofM⊗N since, for r ∈ R,
we have

r(m⊗sn−ms⊗n) = rm⊗sn−r(ms)⊗n = rm⊗sn−(rm)s⊗n ∈W.
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Therefore, M ⊗S N = M ⊗ N/W becomes an R-
module by defining r(m⊗S n) = (rm)⊗S n.

14.2 Let LR, RMS, SN be modules as indicated.
Then L ⊗R (M ⊗S N) ∼= (L ⊗R M) ⊗S N as vector
spaces.

Proof. In general, if U , V , and W are vector
spaces withW < V , then U⊗(V/W ) ∼= U⊗V/U⊗W
by u⊗ v ↔ u⊗ v, where bars represent cosets.

There is a linear map L⊗(M⊗N) → (L⊗RM)⊗S
N that sends l⊗ (m⊗n) to (l⊗Rm)⊗S n. Indeed, if
for fixed l ∈ L we define fl :M⊗N → (L⊗RM)⊗SN
by fl(m ⊗ n) = (l ⊗R m) ⊗S n, then we get a linear
map L⊗ (M ⊗N) → (L⊗RM)⊗SN that sends l⊗x
to fl(x) (x ∈M ⊗N). Using the previous paragraph
and then this map (together with the Fundamental
Homomorphism Theorem), we get linear maps

L⊗(M⊗SN) = L⊗(M⊗N/W ) ∼= L⊗(M⊗N)/L⊗W → (L⊗RM)⊗SN

(W as before the statement of this theorem) that
sends l ⊗ (m ⊗S n) to (l ⊗R m) ⊗S n. In turn, this
composition induces a linear map

L⊗R (M ⊗S N) → (L⊗RM)⊗S N
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that sends l ⊗R (m⊗S n) to (l ⊗R m)⊗S n.
We get a similar map in the other direction and

each composition gives the identity map. �

Exercise 7

Let the notation be as at the first of this section. A linear

map f : M ⊗N → V (V a vector space over K) is middle

linear if f(m ⊗ sn) = f(ms ⊗ n) for all m ∈ M , n ∈ N ,

s ∈ S. Let C be the category defined as follows: The objects

are pairs (V, f) where V is a vector space over K and f :

M ⊗ N → V is a middle linear map; a morphism (V, f) →
(V ′, f ′) is a linear map φ : V → V ′ such that φ ◦ f = f ′.

Let π : M ⊗ N → M ⊗S N be the canonical epimorphism.

Prove that (M ⊗S N, π) is a universal (=initial) object of C
[Hungerford, p. 57].
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15 Induced Modules

Let H be a subgroup of G. Then CH is a subalge-
bra of CG. Moreover, CG is a (CG,CH)-bimodule.
Therefore, if N is a CH-module, we get a CG-module

NG := CG⊗CH N

called an induced module. In this section, we will
study the structure of this module and relate the rep-
resentation and character it affords to those afforded
by N .

Fix a set {a1, . . . , ar} of representatives of the left
cosets of H in G, so that G = ∪̇iaiH. Below, we write
a⊗ n for the tensor a⊗CH n ∈ NG.
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15.1 Let the notation be as above.

(1) dimCN
G = [G : H] dimCN ,

(2) NG has basis {ai⊗nk}, where {nk} is a basis
for N .

Proof. (1) First note that CG =
∑̇
iaiCH, since

G = ∪̇iaiH and the subspace of CG generated by
aiH is aiCH. Now each aiCH is isomorphic to CH
as right CH-module, so we have CG ∼=

⊕r
i=1 CH as

right CH-modules. Using 14.1, we get vector space
isomorphisms NG = CG ⊗CH N ∼=

⊕
i(CH ⊗CH

N) ∼=
⊕

iN . Hence dimCN
G = r dimCN , as de-

sired.
(2) By part (1), it is enough to show that this set

spans NG. Let a ∈ G. Then a = aih for some i and
some h ∈ H. Hence, for any n ∈ N , we get

a⊗ n = ai ⊗ hn = ai ⊗ (
∑
k

αknk) =
∑
k

αk(ai ⊗ nk),

where hn =
∑
k αknk. Since NG is spanned by ele-

ments of the form a⊗ n, the proof is complete. �

15.2 Let the notation be as above. Let R be the
matrix representation of H afforded by N relative to
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the basis {n1, . . . , ns}. For each a ∈ G and 1 ≤ i, j ≤
r, set Rij(a) = R(a−1

i aaj), where we define R(g) := 0
if g /∈ H. Then RG := [Rij ] is the matrix representa-
tion of G afforded by the induced module NG relative
to the basis {ai ⊗ nk} (ordered lexicographically).

Proof. WriteR = [αkl] so that hnl =
∑
k αkl(h)nk

for each h ∈ H. Now let a ∈ G and fix 1 ≤ j ≤ r.
Then aaj = aih for some uniquely determined 1 ≤
i ≤ r and h ∈ H. Note that h = a−1

i aaj . Hence, for
any 1 ≤ l ≤ s we have,

a(aj ⊗ nl) = aih⊗ nl = ai ⊗ hnl = ai ⊗ (
∑
k

αkl(h)nk)

=
∑
k

αkl(a
−1
i aaj)ai ⊗ nk.

Therefore, we have the following picture:
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Note that if i′ ̸= i, then a−1
i′ aaj /∈ H so that

Ri′j(a) = 0. This proves the theorem. �

If the CH-module N affords the character χ, then
we write χG for the character afforded by the induced
module NG and call it an induced character.

15.3 With the notation as above, we have

χG(a) =
1

|H|
∑
g∈G

χ(g−1ag),

where χ(b) := 0 if b /∈ H.
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Proof. Using 15.2, we get

χG(a) = trRG(a) =
∑
i

trRii(a) =
∑
i

trR(a−1
i aai) =

∑
i

χ(a−1
i aai).

Now, if h ∈ H, then 8.5(4) says χ(a−1
i aai) = χ(h−1a−1

i aaih),
so we have

χG(a) =
1

|H|
∑
h∈H

∑
i

χ
(
(aih)

−1a(aih)
)
=

1

|H|
∑
g∈G

χ(g−1ag). �

15.4 (Additivity of Induction) If N and N ′

are CH-modules, then (N ⊕ N ′)G ∼= NG ⊕ N ′G. In
particular, if χ and χ′ are characters of H, then (χ+

χ′)G = χG + χ′G.

Proof. Using 14.1(2) we get a vector space iso-
morphism

(N⊕N ′)G = CG⊗CH(N⊕N ′) ∼= (CG⊗CHN)⊕(CG⊗CHN
′) = NG⊕N ′G.

It is easy to check that this isomorphism is actually
a CG-isomorphism. The statement about characters
now follows from 8.4(1) �
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15.5 (Transitivity of Induction) If H ≤
J ≤ G and N is a CH-module, then (NJ)G ∼= NG.
In particular, if χ is a character of H, then (χJ )G =
χG.

Proof. We have by definition

(NJ )G = CG⊗CJ (CJ ⊗CH N).

By 14.2, the expression on the right is isomorphic as
vector space to (CG⊗CJCJ)⊗CHN , and the isomor-
phism in the proof of that result is easily seen to be
a (left) CG-isomorphism. In turn, the vector space
isomorphism CG⊗CJ CJ ∼= CG of 14.1(4) is clearly
an isomorphism of (CG,CH)-bimodules. Therefore,

(NJ)G ∼= (CG⊗CJCJ)⊗CHN ∼= CG⊗CHN = NG. �
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16 Frobenius Reciprocity

Let H be a subgroup of G, let M be a simple CG-
module and let N be a simple CH-module. The mod-
ule M viewed as a CH-module (denoted MH) might
not be simple, but Maschke’s Theorem (7.1) says it
is at least isomorphic to a direct sum of simple mod-
ules. Similarly, NG is isomorphic to a direct sum of
simple modules. “Frobenius Reciprocity” states that
the number of times N occurs as a direct summand
of MH is the same as the number of times M oc-
curs as a direct summand of NG. This can be proved
by a straightforward character computation (see re-
mark after 16.5), but we will give a more conceptual
module-theoretic proof.

For the time being, let K be any field and let R



16 Frobenius Reciprocity 80

be a K-algebra with identity. For (left) R-modules
L and M , denote by HomR(L,M) the set of all R-
homomorphisms from L to M . This set is a vector
space over K with operations coming from those on
M .

16.1 Let L, L′, M , and M ′ be R-modules. There
are vector space isomorphisms as follows:

(1) HomR(L⊕L′,M) ∼= HomR(L,M)⊕HomR(L
′,M),

(2) HomR(L,M⊕M ′) ∼= HomR(L,M)⊕HomR(L,M
′),

(3) HomR(R,M) ∼=M .

Warning: In general, HomR(M,R) ̸∼=M .

Proof. (1) The desired isomorphism is obtained
by sending f to the pair (f ◦ιL, f ◦ιL′) (= (f |L, f |L′)),
where ιL (respectively, ιL′) is the usual injection.

(2) The desired isomorphism is obtained by sending
f to the pair (πM ◦f, πM ′ ◦f), where πM (respectively,
πM ′) is the usual projection.

(3) Here, define φ : HomR(R,M) →M by φ(f) =
f(1). Clearly, φ is a monomorphism. For m ∈ M ,
define fm : R → M by fm(r) = rm. Then fm ∈
HomR(R,M) and φ(fm) = m, so φ is surjective. �

Now let S be another K-algebra with identity and
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suppose we have modules RLS and RM as indicated.
Then Hom(L,M) (= space of K-linear maps from L
to M) becomes an S-module if we define (sf)(l) =
f(ls) (f ∈ Hom(L,M), s ∈ S, l ∈ L). Moreover,
HomR(L,M) is an S-submodule of Hom(L,M), for if
f ∈ HomR(L,M), then

(sf)(rl) = f
(
(rl)s

)
= f

(
r(ls)

)
= r
(
f(ls)

)
= r
(
(sf)(l)

)
.

Note the similarities between these homomorphism
modules and the tensor products discussed earlier. Of
course, there are the results 14.1 and 16.1. But also,
HomR(L,M) is an S-submodule of Hom(L,M) while,
given modules RMS and SN as indicated, M ⊗S N is
a quotient of the R-module M ⊗ N . Since submod-
ules and quotients are dual concepts, this suggests the
same of homomorphism modules and tensor products.
The following theorem expresses an explicit relation-
ship between these modules.

16.2 (Adjoint Associativity) Let RLS, RM ,
and SN be modules as indicated. There is a vector
space isomorphism

HomR(L⊗S N,M) ∼= HomS(N,HomR(L,M)).

Proof. See Exercise 8 below. �
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We now return to a discussion of modules for group
algebras over the field of complex numbers. Given
CG-modules M and M ′, we put

ιCG(M,M ′) := dimC HomCG(M,M ′)

and call this number the intertwining number ofM
andM ′. According to 16.1, this number is “additive”
in each component, meaning

ιCG(M1 ⊕M2,M
′) = ιCG(M1,M

′) + ιCG(M2,M
′),

and similarly in the second component.

16.3 Let the notation be as above. If M and
M ′ afford the characters χ and χ′, respectively, then
ιCG(M,M ′) = (χ, χ′). In particular, if M ′ is sim-
ple, then ιCG(M,M ′) is the multiplicity of M ′ as a
direct summand of M , and similarly, if M is simple,
then ιCG(M,M ′) is the multiplicity of M as a direct
summand of M ′.

Proof. By Maschke’s Theorem (7.1) we can write
M ∼=

⊕
imiMi and M ′ ∼=

⊕
im

′
iMi with the Mi

pairwise nonisomorphic simple modules and the mi

and m′
i nonnegative integers. According to Schur’s
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Lemma (6.2), we have

HomCG(Mi,Mj) ∼=
{

C, i = j,

0, i ̸= j,

so that ιCG(Mi,Mj) = δij . Using the additivity in
each component of the intertwining number, we ob-
tain

ιCG(M,M ′) =
∑
i,j

mim
′
jιCG(Mi,Mj) =

∑
i

mim
′
i.

On the other hand, if χ and χ′ are the characters
afforded by M and M ′, respectively, and χi is the
(irreducible) character afforded by Mi, then 8.4 gives
χ =

∑
imiχi and χ

′ =
∑
im

′
iχi, so that

(χ, χ′) =
∑
i,j

mim
′
j(χi, χj) =

∑
i

mim
′
i,

where we have used 9.7. This gives the first state-
ment. The second now follows from 9.5. �

16.4 (Frobenius Reciprocity for Modules)
Let H be a subgroup of G, let M be a simple CG-
module and let N be a simple CH-module. The mul-
tiplicity of N as a direct summand of MH equals the
multiplicity of M as a direct summand of NG.
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Proof. It is easy to see that the isomorphism
HomCG(CG,M) ∼=M of 16.1 is actually aCH-isomorphism
(viewingCG as a (CG,CH)-bimodule and hence HomCG(CG,M)
as aCH-module). Therefore, 16.2 gives HomCG(N

G,M) ∼=
HomCH(N,M), so that ιCG(N

G,M) = ιCH(N,MH).
The result now follows from 16.3. �

Given a class function χ on G and a subgroup H of
G, we denote by χH the restriction of χ to H (man-
ifestly a class function on H). If the CG-module M
affords the character χ, then the CH-module MH af-
fords the character χH .

16.5 (Frobenius Reciprocity for Characters)
Let H be a subgroup of G, let χ be a character of
G and let λ be a character of H. Then (λG, χ) =
(λ, χH).

Proof. First note that restriction and induction
of characters are both additive, that is, (χ + χ′)H =

χH +χ′
H (clearly) and (λ+λ′)G = λG+λ′

G
(by 15.3,

for instance). Hence, we may assume that χ and λ
are both irreducible. The result now follows from 16.4
and 9.5. �

Remark. Let H be a subgroup of G. For an arbi-
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trary class function λ on H, we define a class function
λG on G be means of

λG(a) =
1

|H|
∑
g∈G

λ0(g−1ag),

where

λ0(b) =

{
λ(b), b ∈ H,

0, b /∈ H.

By 15.3, this notation agrees with the earlier notation
in the case λ is a character.

Using 10.2 and 16.5, it is easy to show that the
formula (λG, χ) = (λ, χH) holds for arbitrary class
functions χ ∈ Cl(G), λ ∈ Cl(H). We also give a proof
of this using the definitions alone. Computing, we
have

(λG, χ) =
1

|G|
∑
a∈G

λG(a)χ(a)

=
1

|G|
∑
a∈G

1

|H|
∑
g∈G

λ0(g−1ag)χ(a)

=
1

|H|
1

|G|
∑
g∈G

∑
a∈G

λ0(g−1ag)χ(g−1ag)
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=
1

|H|
1

|G|
∑
g∈G

∑
b∈G

λ0(b)χ(b)

=
1

|H|
∑
b∈H

λ(b)χ(b)

= (λ, χH),

where we have used that λ0(G\H) = 0 for the penul-
timate equality.

Exercise 8

Prove 16.2. (Hint: Define maps in both directions and show

that the compositions are the respective identity maps. Do

not bother to check linearity of the various maps involved.

Note, however, that you need to check that your maps are

well-defined in the sense that they map into the indicated

spaces. Also, since L ⊗S N is a quotient space, you may

need to check that your definitions are independent of the

chosen coset representative.)
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17 Clifford Theory

Clifford theory relates the representations of a group
to those of a normal subgroup. The main theorem
(17.3), due to Clifford, says that the restriction of a
simple module to a normal subgroup is isomorphic
to the direct sum of a full conjugacy class of simple
modules (or possibly a direct sum of several copies of
such).

We need some preliminaries. The first result gives
a way to detect induced modules.

17.1 Let H be a subgroup of G, let M be a CG-
module, and let L be a submodule of MH . If M =∑̇
a∈AaL, where A is a set of representatives for the

left cosets of H in G, then M ∼= LG.
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Proof. Assume the hypotheses. Define φ : CG⊗
L → M by s ⊗ l 7→ sl (s ∈ CG, l ∈ L). This is
a CG-homomorphism; it is clearly surjective by our
assumption on M . Note that

φ(s⊗ hl) = s(hl) = (sh)l = φ(sh⊗ l)

(s ∈ CG, h ∈ H, l ∈ L), so we get an induced
CG-epimorphism φ̄ : LG = CG ⊗CH L → M . By
15.1, dimC L

G = [G : H] dimC L. This is also the
dimension of M by our assumption, so φ̄ is an iso-
morphism. �

Let M be a CG-module and let L be a simple
submodule of M . The submodule

L̃ :=
∑
L′≤M
L′∼=L

L′ ≤M

is called the homogeneous component of M con-
taining L.

17.2 Let the notation be as above.

(1) L̃ ∼=
⊕t

i=1 L for some positive integer t.
(2) If L′ is another simple submodule of M , then

L̃′ = L̃ if and only if L′ ∼= L.
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(3) M =
∑̇
N∈NN , where N is the set of homo-

geneous components of M .

Proof. (1) Let {L1, . . . , Lt} be a collection of sub-
modules ofM with Li ∼= L and Li∩

∑
j ̸=i Lj = {0} for

each i. Since dimC

∑
i Li = t dimC L, it is clear that

there is a maximal such set, which we assume with-
out loss of generality to be {L1, . . . , Lt}. Let Lt+1

be a submodule of M with Lt+1
∼= L. Then Lt+1 ⊆∑t

i=1 Li. Indeed, if this were not the case, then, since

Lt+1 is simple, we would have Lt+1 ∩
(∑t

i=1 Li

)
=

{0} and then Li∩
∑
j ̸=i Lj = {0} for all 1 ≤ i ≤ t+1,

contradicting maximality of the set {L1, . . . , Lt}. It

now follows that L̃ =
∑̇
iLi

∼=
⊕t

i=1 Li.

(2) Let L′ be another simple submodule of M and

assume L̃′ = L̃. By part (1), we have
⊕t′

i=1 L
′ ∼=⊕t

i=1 L for some positive integers t and t′. Since
the summands in a direct sum of simple modules are
the composition factors of the sum, the uniqueness of
composition factors guaranteed by the Jordan-Hölder
Theorem implies L′ ∼= L. The converse is clear.

(3) By Maschke’s Theorem,M is the internal direct
sum of a collection of its simple submodules, and,
since each simple submodule is contained in its own
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homogeneous component, we have M =
∑
N∈N N .

We just need to show that this sum is direct. Fix
N ∈ N . We have N = L̃ for some simple submodule
L of M . By part (1), every composition factor, and
hence every simple submodule, of N is isomorphic to
L. On the other hand, if N ′ ∈ N and N ′ ̸= N ,
then by parts (1) and (2), no composition factor of
N ′ is isomorphic to L. Since the sum

∑
N ′∈N
N ′ ̸=N

N ′ is a

homomorphic image of the direct sum
⊕

N ′∈N
N ′ ̸=N

N ′, it

follows that it has no composition factor, and hence
no submodule, isomorphic to L. Therefore,

N ∩
∑
N ′∈N
N ′ ̸=N

N ′ = {0},

and the result follows. �

LetH be a subgroup ofG and let a ∈ G. For h ∈ H
put ah = aha−1 and define aH = {ah |h ∈ H} =
aHa−1. Let L be aCH-module. The conjugate of L
by a is the C(aH)-module aL that has as underlying
vector space L and as action ah·l = hl (h ∈ H, l ∈ L).
It is easy to see that aL is simple if and only if L is
simple. Note that if H ▹G, then aL is a CH-module.
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17.3 (Clifford’s Theorem for Modules)
Let M be a simple CG-module, let H ▹ G, and let L
be a simple submodule of MH . Set H̃ = {a ∈ G | aL̃ =

L̃} ≤ G and let A be a set of representatives for the

left cosets of H̃ in G.

(1) {aL}a∈A is a complete set of pairwise noniso-
morphic conjugates of L.

(2) MH
∼= t

(⊕
a∈A

aL
)
, where t is the multiplic-

ity of L as a summand of MH .
(3) L̃ is a CH̃-submodule of MH̃ . We have L̃H ∼=⊕t

i=1 L and L̃G ∼=M .

Proof. Step 1: For each a ∈ G, we have aL ∼= aL
as CH-modules. First note that HaL = aa−1HaL =
aL, so aL is indeed a CH-module. Define φ : aL →
aL by φ(l) = al. This is clearly a vector space iso-
morphism. For h ∈ H, we have

φ(h·l) = φ(a(a−1ha)·l) = φ(a−1hal) = aa−1hal = hal = hφ(l),

so φ is a CH-isomorphism.
Step 2: We have M =

∑
a∈G aL. For each b ∈ G,

we have b
∑
a aL =

∑
a baL =

∑
a aL, so

∑
a∈G aL

is a CG-submodule of M . It contains L = eL (as-
suming that e ∈ A, which we can do without loss of
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generality) and is hence nonzero. Since M is simple,
the result follows.

Step 3: For each a ∈ G, we have aL̃ = ãL. Let
a ∈ G. By Step 1, aL is isomorphic to aL and is hence

simple. Thus ãL is defined. Now

aL̃ = a
∑

L′≤MH

L′∼=L

L′ =
∑

L′≤MH

L′∼=L

aL′ ⊆
∑

L′≤MH

L′∼=aL

L′ = ãL,

so aL̃ ⊆ ãL. This, in turn, implies

ãL = aa−1ãL ⊆ aã−1aL = aL̃.

Step 4: ãL = b̃L if and only if aH̃ = bH̃. Indeed,

ãL = b̃L ⇐⇒ aL̃ = bL̃ ⇐⇒ b−1aL̃ = L̃ ⇐⇒ b−1a ∈ H̃ ⇐⇒ aH̃ = bH̃,

the first equivalence from Step 3.
We are now in a position to prove the theorem.

Using Step 1, 17.2(2), and Step 4, we find that aL ∼=
bL if and only if aH̃ = bH̃ (a, b ∈ G). This proves
(1).

Next, we prove (2). We have by Step 2 that

M =
∑
a∈G

aL ⊆
∑
a∈G

ãL ⊆M,
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which forces M =
∑
a∈G ãL. In particular {ãL | a ∈

G} is the complete set of components of MH (see

17.2(3)). By Step 4, the modules ãL (a ∈ A) are the
distinct components of MH , so by 17.2(3), we have

MH =
∑̇
a∈AãL.

Let a ∈ A. According to 17.2(1), ãL ∼=
⊕t(a)

i=1 aL
for some positive integer t(a). Now, the map x 7→ ax
defines a vector space automorphism of M . Hence
(assuming without loss of generality that e ∈ A),

t(a) dimC L = t(a) dimC aL = dimC ãL = dimC aL̃ = dimC L̃ = t(e) dimC L.

We conclude that t(a) = t(e) =: t for all a ∈ A.
Therefore,

MH =
∑̇

a∈A
ãL ∼=

⊕
a∈A

t(a)⊕
i=1

aL ∼=
t⊕
i=1

⊕
a∈A

aL = t

(⊕
a∈A

aL

)
.

Moreover, by part (1), t is precisely the multiplicity
of L as a direct summand of MH . This completes the
proof of (2).

It remains to prove (3). First, by the definition of

H̃, it is clear that L̃ is a CH̃-submodule of MH̃ . By

17.2(1) and our definition of t, we have L̃H ∼=
⊕t

i=1 L.
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Finally, from the proof of part (2) together with Step
3 we get

M =
∑̇

a∈A
ãL =

∑̇
a∈A

aL̃.

Therefore, 17.1 implies M ∼= L̃G. �

Let H be an arbitrary subgroup of G, let L be a
CH-module and let a ∈ G. If L affords the character
λ, then the C(aH)-module aL affords the conjugate
character aλ of aH defined by aλ(ah) = λ(h).

We state the most frequently used portion of 17.3
in terms of characters.

17.4 (Clifford’s Theorem for Characters)
Let H ▹ G, let χ ∈ Irr(G), let λ ∈ Irr(H) and assume
t := (χH , λ) ̸= 0. We have χH = t

∑
a∈A

aλ, where
{aλ}a∈A is a complete set of distinct conjugates of λ.

Exercise 9

A CG-module is faithful if the representation it affords has

trivial kernel (i.e., if the representation is injective). Prove
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that if there exists a simple faithful CG-module, then the

center of G is cyclic.
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18 Mackey’s Subgroup Theorem

Let X and Y be two subgroups of G. Given a CX-
module L, we can induce up to the group G and then
restrict down to the subgroup Y to obtain the CY -
module (LG)Y . The main result of this section, due to
Mackey, expresses this new module in terms of mod-
ules obtained by taking conjugates of L, restricting
them to certain subgroups of Y , and then inducing
the resulting modules up to Y .

The constructions depend on the following notion
from group theory. Given a ∈ G, the set

Y aX = {yax | y ∈ Y, x ∈ X}

is called a (Y,X)-double coset. The main facts
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about double cosets are summarized in the next re-
sult.

18.1 Let X and Y be two subgroups of G.

(1) The set of (Y,X)-double cosets partitions G.
(2) For each a ∈ G, the set Y aX is a union of

left cosets of X and is also a union of right
cosets of Y .

(3) Let a ∈ G. If B is a set of representatives for
the left cosets of aX ∩ Y in Y , then Ba is a
set of representatives for the left cosets of X
in Y aX.

Proof. (1) Let Y aX and Y a′X be two (Y,X)-
double cosets and suppose their intersection is nonempty.
Then the intersection contains an element b, which
can be written b = yax and also b = y′a′x′ for some
y, y′ ∈ Y and x, x′ ∈ X. Then

Y aX = Y yaxX = Y y′a′x′X = Y a′X.

We conclude that the double cosets are pairwise dis-
joint. Finally, if a ∈ G, then a = eae ∈ Y aX, so G is
the union of the (Y,X)-double cosets.

(2) For each a ∈ G, we have Y aX = ∪y∈Y yaX and
Y aX = ∪x∈XY ax.
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(3) Let B be a set of representatives for the left
cosets of aX ∩ Y in Y . We first show that Y aX =
BaX. Let y ∈ Y . Now y lies in some left coset of
aX ∩ Y , so we have b−1y ∈ aX ∩ Y for some b ∈ B.
In particular, b−1y = axa−1 for some x ∈ X. Then
yaX = yax−1X = baX. Thus Y aX = BaX, as
desired. Next, suppose baX = b′aX for some b, b′ ∈
B. Then

b′(aX∩Y ) = b′aXa−1∩Y = baXa−1∩Y = b(aX∩Y ),

so b′ = b (implying b′a = ba). This completes the
proof. �

18.2 (Mackey’s Subgroup Theorem) Let X
and Y be subgroups of G. If L is a CX-module, then

(LG)Y ∼=
⊕
a∈A

((aL)aX∩Y )
Y
,

where A is a set of representatives for the (Y,X)-
double cosets in G.

Proof. Let L be a CX-module. Fix a (Y,X)-
double cosetD and letW (D) be the subspace of LG =
CG⊗CX L given by (writing ⊗ for ⊗CX)

W (D) =
∑
c∈C

c⊗ L,
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where C is a set of representatives for the left cosets of
X in D (see 18.1(2)). This definition does not depend
on the choice for C. Indeed, let C and C ′ be two sets
of representatives for the left cosets of X in D. If
c′ ∈ C ′, then c′ = cx for some c ∈ C and x ∈ X,
implying

c′ ⊗ L = cx⊗ L = c⊗ xL = c⊗ L.

This gives
∑
c′∈C′ c′⊗L ⊆

∑
c∈C c⊗L, and symmetry

yields equality as desired.
Now W (D) is a CY -submodule of (LG)Y . Indeed,

if y ∈ Y and C is as above, then for any c ∈ C, we
have yc = c′x for some c′ ∈ C and x ∈ X, so that

y(c⊗ L) = yc⊗ L = c′x⊗ L = c′ ⊗ xL = c′ ⊗ L,

and the claim follows.
Write D = Y aX and let B be a set of representa-

tives for the left cosets of aX ∩ Y in Y . By 18.1(3),
C := Ba is a set of representatives for the left cosets
of X in Y aX, so

W (D) =
∑̇

b∈B
ba⊗ L =

∑̇
b∈B

b(a⊗ L),

where we have used 15.1(2) to see that the sum is
direct. Now the map φ : aL→ a⊗L given by φ(l) =
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a⊗ l is a C(aX)-isomorphism. Indeed, it is clearly a
vector space isomorphism, and we have

φ(ax · l) = φ(xl) = a⊗xl = ax⊗ l = axa⊗ l = axφ(l)

(x ∈ X, l ∈ aL). In particular, a⊗L ∼= aL as C(aX ∩
Y )-modules. Therefore, by 17.1, we have W (D) ∼=
((aL)aX∩Y )

Y
as CY -modules.

Finally, 15.1(2) and 18.1(1) imply LG =
∑̇
DW (D),

where the sum is over all (Y,X)-double cosets D in
G, whence

(LG)Y ∼=
⊕
a∈A

((aL)aX∩Y )
Y
,

where A is a set of representatives for the (Y,X)-
double cosets in G. This completes the proof. �

We record a useful special case of 18.2.

18.3 If H ▹ G and L is a CH-module, then

(LG)H ∼=
⊕
a∈A

aL,

where A is a set of representatives for the (left) cosets
of H in G.
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Proof. Assume the hypotheses and let A be as
stated. For each a ∈ A, we have HaH = aHH =
aH, so that A is also a set of representatives for the
(H,H)-double cosets in G. Also, for each a ∈ A, we
have

((aL)aH∩H)
H

= ((aL)H)
H ∼= aL.

The result now follows from 18.2. �

Remark. One can also prove 18.3 quite easily with-
out using Mackey’s Subgroup Theorem. With the no-
tation as in the statement, it is easy to see that for
each a ∈ A, the subspace a ⊗ L of LG is actually
a CH-submodule. Moreover, by essentially the same
argument as that in the proof of 17.3, Step 1, we have
a⊗ L ∼= aL (a ∈ A) as CH-modules. Therefore,

(LG)H =
∑̇

a∈A
a⊗ L ∼=

⊕
a∈A

aL,

as desired.
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19 Quotients

In the last few sections, we have been studying the re-
lationship between the representations of a group and
those of its subgroups. We see in the next theorem
that the relationship between the representations of
a group and those of a quotient of the group is much
easier to describe.

Let H be a normal subgroup of G. Put Ḡ = G/H
and let π : G→ Ḡ denote the canonical epimorphism
(π(a) = aH).

19.1 The assignment ρ 7→ ρ◦π defines a bijection
between the set of representations of Ḡ and the set of
those representations of G with kernel containing H.
Moreover, this map sends each irreducible representa-
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tion to an irreducible representation.

Proof. If ρ : Ḡ → GL(V ) is a representation,
then ρ ◦ π : G → GL(V ) is a representation with
kernel containing H, so the map is well-defined.

Let φ : G → GL(V ) be a representation with
kernel containing H. By the main lemma to the
First Isomorphism Theorem (see [Hungerford, Theo-
rem 5.6, p. 43]), there exists a unique homomorphism
φ̄ : Ḡ → GL(V ) such that φ̄ ◦ π = φ, that is, such
that φ̄ 7→ φ. This shows that the map is bijective.

Finally, if ρ : Ḡ → GL(V ) is a representation
and W ≤ V satisfies

(
(ρ ◦ π)(G)

)
W ⊆ W , then(

ρ(Ḡ)
)
W ⊆ W . Therefore, the last statement fol-

lows. �
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20 Example: The Dihedral Group

In this section, we use some of the theory we have
developed to compute the character table of the dihe-
dral group.

Fix a positive integer m and let G = Dm, the di-
hedral group of degree m. Thus G is the group of
symmetries of a regular m-gon. Since there are m
orientations of the m-gon without flipping it over, as
well as m orientations after flipping it over, it is clear
that G has order 2m.

Position the m-gon in such a way that one of the
vertices is at the top. Label the vertices 1, 2, . . . ,m
starting with 1 at the top and proceeding clockwise.
Any orientation of the m-gon gives rise to a permu-
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tation of the vertices, which can be viewed, relative
to the labeling system just described, as an element
of the symmetric group Sm. In this way, we consider
G to be a subgroup of Sm. The clockwise rotation of
the m-gon through an angle of 2π/m radians is given
by

a =

(
1 2 · · · m− 1 m
2 3 · · · m 1

)
.

The flip of the m-gon about the vertical line through
the top vertex is given by

b =

(
1 2 3 · · · m− 1 m
1 m m− 1 · · · 3 2

)
.

Since any symmetry of the m-gon produced by rota-
tion is a power of a, it follows that G = ⟨a, b⟩. It is
easy to check that am = 1 = b2, and that aib = ba−i

for all i. In particular, G = {ai, bai | 0 ≤ i < m}.
Set H = ⟨a⟩. Then H is a cyclic group of order

m. According to the first example of Section 12, H
has precisely m irreducible characters λj (0 ≤ j < m)

given by λj(a
i) = ωij , where ω = e2πi/m.

Fix 0 ≤ j < m. Now H is a normal subgroup of G
since, for instance, its index in G is two. Therefore,
18.3 applies to give

(λj
G)H = λj +

bλj ,
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where bλj denotes the conjugate by b of the character
λj as defined in Section 17. For each h ∈ H, we have

bλj(h) =
bλj
(
b(b−1hb)

)
= λj(b

−1hb) = λj(h
−1) = λj(h),

whence bλj = λj . Then, by Frobenius Reciprocity
(16.5), we get

(λj
G, λj

G) = (λj , (λj
G)H) = (λj , λj+λj) = 1+(λj , λj).

Hence, λj
G is irreducible if and only if λj ̸= λj (see

13.2).

The even m case. By the previous paragraph, λj
G

is irreducible if 1 ≤ j < m/2. This gives m/2 − 1
distinct irreducible characters of G, each of degree
two. Since the sum of the squares of the degrees of the
irreducible characters equals the order of the group
(11.2), we see that we have not yet found all of the
irreducible characters.

Set K = ⟨a2⟩. Then K is a normal subgroup of G.
Indeed, it is clear that a−1Ka = K and since aib =
ba−i, we have b−1Kb = K. Since a and b generate
G, the claim follows. The group Ḡ := G/K has order
four and it contains two elements of order two, namely
ā and b̄. Hence we obtain an isomorphism Ḡ→ Z2 ⊕
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Z2 by mapping ā 7→ (1, 0) and b̄ 7→ (0, 1). Denoting
by σ the nontrivial character of Z2 (i.e., σ(0) = 1,
σ(1) = −1), we have from 13.3 the following character
table of Z2 ⊕ Z2:

(0, 0) (1, 0) (0, 1) (1, 1)

1 1 1 1 1
(σ, 1) 1 −1 1 −1
(1, σ) 1 1 −1 −1
(σ, σ) 1 −1 −1 1

According to 19.1, the compositions of these charac-
ters with the canonical map G→ Ḡ ∼= Z2 ⊕Z2, yield
four characters of G, each of degree one, which we
denote by ψi, 0 ≤ i ≤ 3, respectively. Checking the
sum of the squares of the degrees we see that these
characters complete the list. There are thus m/2 + 3
irreducible characters of G and the character table is
as follows (1 ≤ j < m/2):
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ai bai

ψ0 = 1 1 1
ψ1 (−1)i (−1)i

ψ2 1 −1
ψ3 (−1)i (−1)i+1

λj
G 2 cos 2πij

m 0

To get the last line, note that

λj
G(ai) = λj(a

i)+λj(ai) = ωij+ω−ij = 2Re(ωij) = 2 cos(2πij/m),

and that for x ∈ G\H,

λj
G(x) =

1

|H|
∑
g∈G

λ0j (g
−1xg) = 0

by 15.3, where we have used the definition of λ0j and

the fact that g−1xg /∈ H for each g ∈ G since H is
normal.

Finally, one checks that G has m/2 + 3 conjugacy
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classes, namely,

{1},
{ai, am−i} (1 ≤ i < m/2),

{am/2},
{ba2k | 0 ≤ k < m/2},
{ba2k+1 | 0 ≤ k < m/2}.

Therefore, the number of irreducible characters equals
the number of conjugacy classes as expected (see 10.3).

The odd m case. In this case, λj
G, 1 ≤ j ≤ (m −

1)/2, are irreducible and distinct. This yields (m −
1)/2 irreducible characters of degree two. Also, G/H
is isomorphic to Z2, so, arguing as above, we obtain
two characters of degree one. Summing the squares
of the degrees, we get 2m = |G|, so these are all of the
irreducible characters of G. Thus, there are (m+3)/2
irreducible characters and the character table is as
follows (1 ≤ j ≤ (m− 1)/2):
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ai bai

ψ0 = 1 1 1
ψ1 1 −1
λj
G 2 cos 2πij

m 0

There are (m+ 3)/2 conjugacy classes, namely,

{1},
{ai, am−i} (1 ≤ i ≤ (m− 1)/2),

{bai | 0 ≤ i < m}.

Exercise 10

Let Q8 be the subgroup of GL2(C) generated by A =[
0 1
−1 0

]
and B =

[
0 i
i 0

]
. Show that Q8 and D4 have

the same character table, yet Q8 ̸∼= D4. (Hint: First check

that A4 = I = B4 and that BA = A3B.)
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21 The Structure of the Group
Algebra

According to Maschke’s Theorem (7.1), the group al-
gebra CG is semisimple. (See Hungerford, Theorem
3.7 (i ⇔ v), p. 439. Note that CG is left Artinian.
Indeed, its left ideals are vector subspaces and, since
CG is finite-dimensional, any chain of left ideals must
terminate.) Therefore, the Artin-Wedderburn The-
orem (Hungerford, Theorem 5.4, p. 452) says that
CG is isomorphic to a direct sum of matrix algebras
with the entries of each matrix algebra coming from
a division algebra over C. In this section, we give
an elementary proof of this special case of the Artin-
Wedderburn Theorem using the representation theory
we have developed.
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Let χ1, . . . , χt be the irreducible characters of G.
For 1 ≤ i ≤ t, let Ri : G→ GLni(C) be a matrix rep-
resentation ofG affording χi and note that ni = χi(e).
We extend Ri linearly to an algebra homomorphism
CG→ Matni(C), which we continue to denote by Ri.

Set R = (Ri) : CG →
⊕

iMatni(C). So for
x ∈ CG, we have R(x) =

(
Ri(x)

)
=
(
R1(x), . . . ,

Rt(x)
)
. This is an algebra homomorphism, where the

codomain is viewed as an algebra under component-
wise multiplication.

Let n =
∑
i ni. The set of all diagonal block ma-

trices, with blocks of sizes n1, n2, . . . , nt, respectively,
is a subalgebra of Matn(C). It is easy to see that this
subalgebra is isomorphic to

⊕
iMatni(C). We use

this isomorphism to identify these two algebras. In
particular, for any x ∈ CG, we view R(x) as the diag-
onal block matrix with blocksR1(x), R2(x), . . . , Rt(x),
respectively.

21.1 The map R : CG →
⊕

iMatni(C) is an
algebra isomorphism.

Proof. It was observed above thatR is an algebra
homomorphism. The dimension of both algebras is
|G| =

∑
i n

2
i (see 11.2), so it suffices to show that

R is injective. For this, it is enough to find a map
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S :
⊕

iMatni(C) → CG such that S ◦ R = 1. Set
S((Di)) =

∑
a∈G βaa, where

βa =
1

|G|
∑
i

ni tr
(
Ri(a

−1)Di

)
.

If x =
∑
a∈G αaa ∈ CG, then (S◦R)(x) = S

(
(Ri(x))

)
=∑

a∈G βaa, where

βa =
1

|G|
∑
i

ni tr

(
Ri(a

−1)Ri

(∑
b∈G

αbb

))

=
1

|G|
∑
i

ni
∑
b∈G

αb tr
(
Ri(a

−1b)
)

=
1

|G|
∑
b∈G

αb
∑
i

χi(e)χi(b−1a)

=
1

|G|
∑
b∈G

αb|G|δab

= αa,

using 11.1 for the next to the last equality. �
There are several obvious structural features of

⊕
iMatni(C),

which carry over to CG thanks to 21.1. We point out
a few of these features next.
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Set B =
⊕

iMatni(C). For each 1 ≤ i ≤ t, set

Bi = (0, . . . , 0,
i

Matni(C), 0, . . . , 0)

and put Ai = R−1(Bi).

21.2 Let the notation be as above.

(1) Each Ai is an ideal of CG and CG =
∑̇
iAi.

(2) Let Li be a simple CG-module affording χi.
Then Ai is a direct sum of ni left ideals, each
CG-isomorphic to Li. In particular, CG ∼=⊕

i niLi as CG-modules.
(3) Let ei = ni

|G|
∑
a∈G χi(a

−1)a. Then ei is a

multiplicative identity of Ai and
∑
i ei = 1 ∈

CG.

Proof. (1) Clearly each Bi is an ideal of B and

B =
∑̇
iBi, so the statement follows from 21.1.

(2) For each 1 ≤ j ≤ ni, let Bij be the subspace
of B consisting of those matrices having nonzero en-
tries confined to the jth column of the ith block. In
particular, Bij ⊆ Bi. Clearly, Bij is a left ideal of B

and Bi =
∑̇
jBij . Therefore, each Aij := R−1(Bij) is

a left ideal of CG and Ai =
∑̇
jAij .
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We claim that Aij ∼= Li as CG-modules. To prove
this, it suffices to show that Bij ∼= Li, where the B-
module Bij is viewed as a CG-module via R. Now Li
can be identified with Cni (= space of ni-dimensional
column vectors over C), which is a CG-module with
multiplication xl = Ri(x)l (x ∈ CG, l ∈ Cni), the
product on the right being matrix multiplication. Let
φ : Li = Cni → Bij be the natural map. Then

φ(xl) = φ
(
Ri(x)l

)
=
(
0, . . . , 0,

(i,j)

Ri(x)l, 0, . . . , 0
)
= R(x)φ(l) = xφ(l)

(x ∈ CG, l ∈ Li), where the superscript (i, j) signifies
the jth column of the ith block. Therefore, φ is a
CG-isomorphism.

Finally,

CG =
∑̇

i
Ai =

∑̇
i,j
Aij ∼=

⊕
i

niLi.

(3) Let Ei = (0, . . . , 0, Ini , 0, . . . , 0) ∈ B. Then,
with notation as in the proof of 21.1, we have

R−1(Ei) = S(Ei) =
ni
|G|

∑
a∈G

χi(a
−1)a = ei.

Therefore, by 21.1 it suffices to show that Ei is a
multiplicative identity of Bi and that

∑
iEi = I, both

of which are clear. �
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22 The Center of the Group Al-
gebra

In the last section, we saw that many structural prop-
erties of the group algebra CG become transparent
once it is identified with a direct sum of matrix alge-
bras. Here, we continue using this technique to study
the center ofCG. (The center Z(R) of a ring R is the
set of those elements of R that commute with all other
elements: Z(R) := {z ∈ R | zr = rz for all r ∈ R}.)

22.1 Let n be a positive integer. The center of
Matn(C) is the set {αI |α ∈ C} of all scalar matrices.

Proof. First, the set of scalar matrices is clearly
contained in the center of Matn(C). Now, let [αij ] be
in the center of Matn(C) and let Ekl = [eij ] be the
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n × n-matrix with 1 in the (k, l)-position and zeros
elsewhere. Since [αij ]Ekl = Ekl[αij ], we have for all
1 ≤ i, k, l ≤ n

αik =
∑
j

αijejl =
∑
j

eijαjl = αllδik.

For i ̸= k, we have αik = 0, while, for any 1 ≤ i, l ≤ n,
we have αii = αll. �

Remark. This result also follows from Schur’s Lemma
(6.2). (Actually, for this we require the G in the
statement of Schur’s Lemma to have infinite order.
Defining a representation of an infinite G just like we
did for finite G, it is easily checked that representa-
tions still correspond to CG-modules where now CG
consists of only finite linear combinations of group el-
ements. The proof of Schur’s Lemma is seen to be
valid in this setting.) Set G = GLn(C) and V = Cn.
We view V as a CG-module via matrix multiplica-
tion. It is easy to see that V is simple as such. Let
A be in the center of Matn(C) and let f : V → V
be multiplication by A. Then for all a ∈ G, v ∈ V
we have f(av) = Aav = aAv = af(v), so f is a CG-
homomorphism. By Schur’s Lemma, f = α1V for
some α ∈ C, whence A = αI.



22 The Center of the Group Algebra 118

Let the notation be as in Section 21. Accord-
ing to 21.1, R : CG →

⊕t
i=1 Matni(C) is an al-

gebra isomorphism. Therefore, R maps the center
Z = Z(CG) of CG isomorphically onto the center

of
⊕

iMatni(C), which, by 22.1, is
∑̇
iCEi, where

Ei = (0, . . . , 0, Ini , 0, . . . , 0). Therefore, if z ∈ Z, then
R(z) =

∑
i ωi(z)Ei for unique ωi(z) ∈ C. This de-

fines for each 1 ≤ i ≤ t a map ωi : Z → C. Clearly,
each ωi is an algebra homomorphism.

22.2 If z =
∑
a∈G αaa ∈ Z, then for each 1 ≤

i ≤ t we have

ωi(z) =
1

ni

∑
a∈G

αaχi(a).

Proof. Let 1 ≤ i ≤ t. The given formula for ωi
is linear in z, so it suffices to check its validity on a
basis for Z. Since {Ei | 1 ≤ i ≤ t} is clearly a basis
for the center of

⊕
iMatni(C), the set {ei | 1 ≤ i ≤ t}

is a basis for Z, where ei = S(Ei) =
ni

|G|
∑
a χi(a

−1)a

(S as in the proof of 21.1). For each 1 ≤ j ≤ t, we
have

ωi(ej) = δij =
1

|G|
∑
a

χj(a
−1)χi(a) =

1

ni

∑
a

nj
|G|

χj(a
−1)χi(a).
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This completes the proof. �

Let C1, . . . , Ct be the conjugacy classes of G (there
are t such by 10.3) and for each 1 ≤ i ≤ t, set si =∑
c∈Ci

c.

22.3 With notation as above, {si | 1 ≤ i ≤ t} is
a basis for Z.

Proof. Since the sets Ci (1 ≤ i ≤ t) are pairwise
disjoint, {si} is linearly independent. Therefore, it
remains to show that this set spans Z.

Let x =
∑
a∈G αaa ∈ CG. We have

x ∈ Z ⇐⇒ g−1xg = x for all g ∈ G

⇐⇒
∑
a∈G

αag
−1ag =

∑
a∈G

αaa for all g ∈ G

⇐⇒
∑
a∈G

αgag−1a =
∑
a∈G

αaa for all g ∈ G

⇐⇒ αgag−1 = αa for all a, g ∈ G.

In other words, x is in Z if and only if the function
a 7→ αa is constant on conjugacy classes (i.e., is a
class function). In particular, each si is in Z so the
span of {si} is contained in Z. On the other hand,
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suppose x ∈ Z. Then for each 1 ≤ i ≤ t, we get a
well-defined complex number βi by setting βi = αc
for any c ∈ Ci. Then

x =
∑
a∈G

αaa =
t∑
i=1

∑
c∈Ci

αcc =
t∑
i=1

βi
∑
c∈Ci

c =
t∑
i=1

βisi,

so that {si} spans Z, as desired. �

Remark. The proof of 22.2 shows that {ei | 1 ≤ i ≤
t} is a basis of Z. This, together with 22.3 provides
another proof of 10.3.
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23 Some Algebraic Number The-
ory

We need some standard results from algebraic number
theory in order to utilize some of the more subtle
properties of characters.

The first result is a statement about Z-modules.
Since “Z-module” is the same as “abelian group,” it
could be recast as a statement about abelian groups
as well.

23.1 Any submodule of a finitely generated Z-
module is finitely generated.

Proof. Let A be a finitely generated Z-module
and let H be a submodule of A. We have A =
⟨a1, . . . , an⟩ =

∑
i Zai for some ai ∈ A. We proceed
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by induction on n. If n = 1, then A is cyclic, so that
H is cyclic as well and hence finitely generated. Now
assume n > 1. Let

I = {z1 ∈ Z |h = z1a1+· · ·+znan for some h ∈ H and some z2, . . . , zn ∈ Z}.

Clearly I is an ideal of Z, so I = (z) for some z ∈ Z.
Since z ∈ I, we have h0 = za1 + z2a2 + · · · + znan
for some h0 ∈ H and some z2, . . . , zn ∈ Z. Let A1 =∑
i>1 Zai and put H1 = H ∩ A1. By the induction

hypothesis, H1 =
∑m
i=1 Zhi for some m and some

hi ∈ H. But then, H = Zh0 +
∑m
i=1 Zhi. Indeed, if

h ∈ H, then we have h = z1za1 + z2a2 + · · · + znan
for some zi ∈ Z, so h − z1h0 ∈ H1. Thus H equals
⟨h0, . . . , hm⟩ and is hence finitely generated. �

Let R be a commutative ring with identity. An
element α of R is integral over Z if f(α) = 0 for
some monic f ∈ Z[x] (i.e., for some f ∈ Z[x] of the
form f(x) = xn + zn−1x

n−1 + · · ·+ z1x+ z0).
Let S be a subring of R and let X be a subset of

R. The subring of R generated by the set S∪X is de-
noted S[X]. We write Z[X] to mean (Z ·1R)[X]. Sup-
pose X = {α1, . . . , αn}. We write S[α1, . . . , αn] for
S[X]. We have S[α1, . . . , αn] = {g(α1, . . . , αn) | g ∈



23 Some Algebraic Number Theory 123

S[x1, . . . , xn]}. Indeed, the set on the right is con-
tained in every subring ofR containing S∪{α1, . . . , αn}
and it is a subring of R since it is the image of the
evaluation map S[x1, . . . , xn] → R obtained by re-
placing the xi in a polynomial with the αi. Finally,
it is an easy exercise to show that S[α1, . . . , αn] =
S[α1, . . . , αn−1][αn].

23.2 Let α ∈ R. The following are equivalent:

(1) α is integral over Z,
(2) Z[α] is finitely generated as Z-module,
(3) Z[α] is contained in a finitely generated Z-

submodule of R.

Proof. (1⇒2) Assume α is integral over Z. We
have f(α) = 0 for some monic f ∈ Z[x] of degree,
say, n. We claim that Z[α] = ⟨1, α, . . . , αn−1⟩. Since
Z[α] = {g(α) | g ∈ Z[x]}, it is enough to show that
αm ∈ ⟨1, α, . . . , αn−1⟩ for each m ≥ 0. We proceed
by induction on m. The case m ≤ n − 1 is clear so
assume m ≥ n. We have

0 = αm−nf(α) = αm−n(αn + zn−1α
n−1 + · · ·+ z1α+ z0)

= αm + zn−1α
m−1 + · · ·+ z1α

m−n+1 + z0α
m−n,
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where f(x) = xn + zn−1x
n−1 + · · ·+ z1x1 + z0. So

αm = −zn−1α
m−1−· · ·−z1αm−n+1−z0αm−n ∈ ⟨1, α, . . . , αn−1⟩

by the induction hypothesis.
(2⇒1) Assume Z[α] is finitely generated as Z-module.

Then Z[α] = ⟨y1, . . . , ys⟩ for some yi ∈ Z[α]. In turn,
for each 1 ≤ i ≤ s, we have yi = fi(α) for some
fi ∈ Z[x]. Choose a positive integer n with n > deg fi
for all i. Then αn =

∑
i ziyi =

∑
i zifi(α) for some

zi ∈ Z. Hence α is a zero of the monic polynomial
xn −

∑
i zifi(x).

(2⇒3) This is trivial.
(3⇒2) This follows directly from 23.1. �

Set O(R) = {α ∈ R |α is integral over Z}.

23.3 O(R) is a subring of R.

Proof. Clearly 0 ∈ O(R). Let α, β ∈ O(R). By
23.2, Z[α] and Z[β] are both finitely generated Z-
modules, say Z[α] = ⟨α1, . . . , αm⟩ and Z[β] = ⟨β1, . . . , βn⟩.
Then

Z[α, β] = Z[α][β] =

(∑
i

Zαi

)
[β] =

∑
i

Z[β]αi =
∑
i,j

Zβjαi,
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so that Z[α, β] is a finitely generated Z-module. The
subrings Z[α+β], Z[−α], and Z[αβ] are contained in
Z[α, β], so 23.2(1⇔3) implies that α+β, −α, and αβ
are in O(R). This shows that O(R) is a subring of R,
as desired. �

Put O = O(C). The elements of O are called
algebraic integers.

23.4 We have O ∩Q = Z.

Proof. It is clear that O ∩Q contains the set Z.
Now let α ∈ O ∩ Q. Then we can write α = p/q
with p and q relatively prime integers, and with q
positive. Since α ∈ O, we have f(α) = 0 for some
f(x) = xn+ zn−1x

n−1+ · · ·+ z1x+ z0 ∈ Z[x]. Hence,

pn+zn−1p
n−1q+zn−2p

n−2q2+· · ·+z1pqn−1+z0q
n = 0.

This shows that any prime divisor of q must also be
a divisor of p. But p and q are relatively prime, so it
follows that q = 1, whence α = p ∈ Z. �

Remark. The elements of O are often referred to
as just “integers.” The elements of Z are then called
“rational integers,” the terminology being justified by
23.4.



126

24 Character Degrees and the
Group Order

The results from algebraic number theory obtained in
the last section will be applied here to show that the
degree of any irreducible character of G divides the
order of G.

Recall that O = O(C) denotes the ring of (alge-
braic) integers.

24.1 If χ is a character of G, then χ(a) is an
element of O for each a ∈ G.

Proof. First note that each root of unity lies in
O as it is a zero of the monic polynomial xn − 1 for
some n. If χ is a character of G, then for each a ∈ G,
χ(a) is a sum of roots of unity, by 8.5(2), and hence
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lies in O. �

As earlier, we use Z to denote the center of the
group algebra CG, we let χ1, . . . , χt be the distinct
irreducible characters of G, and we put ni = χi(e)
(1 ≤ i ≤ t).

24.2 Let x =
∑
a∈G αaa ∈ Z and assume αa ∈ O

for each a. Then x ∈ O(Z). In particular, 1
ni

∑
a αaχi(a) ∈

O for each 1 ≤ i ≤ t.

Proof. For each 1 ≤ i ≤ t, 22.2 gives ωi(x) =
1
ni

∑
a αaχi(a). Therefore, since a ring homomor-

phism preserves integral elements, the second state-
ment follows from the first.

By 22.3, x is a linear combination of class sums:
x =

∑t
i=1 βisi, where si =

∑
c∈Ci

c. Since the con-
jugacy classes are mutually disjoint, linear indepen-
dence of the group elements allows us to conclude that
for each i, βi = αc for every c ∈ Ci. In particular,
each βi is in O. Recall that we view C as a subring of
CG by identifying α ↔ αe. With this identification
we clearly have O ⊆ O(Z) so that each βi is in O(Z).
Therefore, in order to establish our claim that x is
in O(Z) it is enough, by the closure properties of the
subring O(Z), to show that each si is in O(Z).
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Fix 1 ≤ j, k ≤ t. As sjsk is in Z, 22.3 gives sjsk =∑
l γlsl for some γl ∈ C. On the other hand, sjsk

is clearly a Z-linear combination of group elements.
Using the linear independence of the group elements
and arguing as above, we find that each γl is in Z.

The preceding paragraph shows that
∑
j Zsj is a

subring of Z. Since this subring is finitely generated
as Z-module and since it contains each Z[si], we have
from 23.2(3⇒1) that si is in O(Z) for each i. This
completes the proof. �

24.3 The degree of any irreducible character of
G divides the order of G.

Proof. Fix 1 ≤ i ≤ t and let

x =
∑
a∈G

χi(a
−1)a =

∑
a∈G

χi(a)a.

Since χi is a class function (8.5(4)), we have x ∈ Z by
22.3 (or its proof). Also, χi(a

−1) ∈ O for each a ∈ G
by 24.1. Therefore, using the orthogonality relation
9.4 and then 24.2 and 23.4 in succession, we obtain

|G|
ni

=
1

ni

∑
a∈G

χi(a
−1)χi(a) ∈ O ∩Q = Z.
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(We have to look back to the fraction |G|/ni to see
why the second member lies in Q as well.) Therefore,
ni divides |G|, as desired. �
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25 Burnside’s Theorem on Solv-
ability

The group G is solvable if all its composition factors
are abelian (so called for the connection with solv-
ability by radicals of polynomials via Galois Theory).
Burnside’s Theorem states that if the order of G is
divisible by at most two prime numbers, then G is
solvable. The original proof, which we present here,
uses character theory. Fairly recently a character-free
proof has been found, but the original proof is much
shorter. We begin by reviewing some results from
basic algebra.

If α ∈ C, then Q(α) denotes the subfield of C
generated by Q ∪ α.
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25.1 Let α ∈ O and let fα ∈ Q[x] be a monic
polynomial of minimal degree such that fα(α) = 0.

(1) If g ∈ Q[x] and g(α) = 0, then fα divides
g. In particular, fα is the unique irreducible
monic polynomial in Q[x] for which fα(α) =
0.

(2) We have fα(x) =
∏
i(x−αi) with α1(= α), α2 . . . , αn

distinct elements of O. In particular, N(α) :=∏
i αi is an integer and N(α) ̸= 0 if α ̸= 0.

(3) For each 1 ≤ i ≤ n, there exists a field isomor-
phism σi : Q(α) → Q(αi) such that σi(α) =
αi.

Remark. fα is called the minimal polynomial of
α and N(α) is called the norm of α.

Proof. (1) First, since α is in O, it is a zero
of a monic polynomial in Z[x] ⊆ Q[x], so fα is de-
fined. Let g ∈ Q[x] and assume that g(α) = 0.
By the division algorithm, there exist q, r ∈ Q[x]
with deg r < deg fα such that g = qfα + r. Hence
r(α) = g(α) − q(α)fα(α) = 0. If r ̸= 0, then we can
divide r by its leading coefficient to get a monic poly-
nomial of degree less than the degree of fα having α
as a zero, a contradiction. So r = 0 and g = qfa.
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Therefore, fα|g.
Suppose fα has a factorization fα = gh with deg g, deg h <

deg fα. We have g(α)h(α) = fα(α) = 0 so that
g(α) = 0 or h(α) = 0. In either case, we get a contra-
diction to the choice of fα (after dividing by leading
coefficients to make the polynomials monic if neces-
sary). Therefore, fα is irreducible.

Let g ∈ Q[x] be an irreducible monic polynomial
such that g(α) = 0. By the first statement, fα divides
g and, since g is irreducible, we have g = βfα for some
β ∈ Q. But g and fa are monic, so β = 1 and g = fα.
This proves the uniqueness statement.

(2) Since C is algebraically closed, fα(x) =
∏
i(x−

αi) for some αi ∈ C. Now f(α) = 0 for some monic
f ∈ Z[x] and part (1) implies fα|f . Since fα(αi) = 0
we also have f(αi) = 0, so each αi is in O.

Suppose the αi are not all distinct, so that fα(x) =
(x − αi)

2g(x) for some g ∈ C[x] and some i. Then
f ′α(x) = (x−αi)2g′(x)+2(x−αi)g(x) implying f ′α(αi) =
0. Now fα(αi) = 0 so part (1) gives fαi = fα, imply-
ing deg f ′α < deg fα = deg fαi contrary to the defini-
tion of fαi . Hence α1, . . . , αn are distinct.

Note that fα(x) =
∏
i(x− αi) = xn + · · · ±N(α),

so N(α) ∈ Q. But also, N(α) ∈ O since each αi ∈ O
and O is a subring of C. Hence N(α) ∈ Q ∩ O = Z
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by 23.4.
Finally, assume N(α) = 0. Then αi = 0 for some i

so that fα(x) = fαi(x) = x giving α = fα(α) = 0.
(3) By evaluating polynomials at αi we obtain a

ring epimorphism Q[x] → Q[αi]. The kernel of this
map is (fαi) which is maximal since fαi is irreducible.
Therefore, Q[αi] ∼= Q[x]/(fαi

) is a field. In particu-
lar, Q[αi] = Q(αi). Now fαi = fα, so we get isomor-
phisms Q(α) → Q[x]/(fα) → Q(αi) the composition
of which sends α to αi. �

Next, we record a fact about roots of unity.

25.2 Let ω1, ω2, . . . , ωn ∈ C be roots of unity.
We have |ω1 +ω2 + · · ·+ωn| ≤ n with equality if and
only if ω1 = ω2 = · · · = ωn.

Proof. An elementary result from complex anal-
ysis states that if α and β are complex numbers, then
|α+β| ≤ |α|+|β| (“triangle inequality”) with equality
if and only if β = rα for some r ≥ 0. We now prove
the claim by induction on n. The case n = 1 is trivial.
Assume n > 1. By the triangle inequality and then
the induction hypothesis, we have |ω1 + · · · + ωn| ≤
|ω1 + · · · + ωn−1| + |ωn| ≤ (n − 1) + 1 = n. Sup-
pose we have equality: |ω1 + · · · + ωn| = n. Then
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|ω1 + · · · + ωn−1| = n − 1 so the induction hypothe-
sis gives ω1 = ω2 = · · · = ωn−1. Also, the equality
|ω1 + · · · + ωn| = |ω1 + · · · + ωn−1| + |ωn| implies
ωn = r(ω1 + · · ·+ωn−1) = r(n− 1)ω1 for some r ≥ 0.
Taking moduli gives r(n − 1) = 1 so that ωn = ω1.
The converse is obvious. �

In the proof of the next lemma we will need some
results from linear algebra. Let A ∈ Matn(C). Recall
that fA(x) = det(xI−A) is the characteristic poly-
nomial of A. The Cayley-Hamilton theorem states
that fA(A) = 0 if we view fA ∈ (Matn(C))[x] by iden-
tifying α ∈ C with αI. Let mA ∈ C[x] be the monic
polynomial of least degree for which mA(A) = 0. Us-
ing arguments similar to those in the proof of 25.1 we
find that mA is uniquely determined and if g(A) = 0
for some g ∈ C[x], then mA|g. (However, mA is not
irreducible, in general.) mA is called the minimum
polynomial of A.

25.3 Let R : G→ GLn(C) be a matrix represen-
tation affording the character χ and let a ∈ G. Then
|χ(a)| ≤ n with equality if and only if R(a) ∈ C× · I.

Proof. SetA = R(a). The eigenvalues ω1, ω2, . . . , ωn
of A are roots of unity and χ(a) =

∑
i ωi, so 25.2 gives
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|χ(a)| ≤ n.
For the second part, the implication (⇐) is clear,

so assume |χ(a)| = n. Then ω1 = ω2 = · · · = ωn =: ω
using 25.2 again. Hence, fA(x) = (x − ω)n. By
the Cayley-Hamilton theorem, fA(A) = 0. But also,
g(A) = 0 where g(x) = x|G| − 1, so mA|fA and
mA|g. Since g has no multiple zeros, neither doesmA,
whence mA = x−ω. Therefore, A−ωI = mA(A) = 0
and A = ωI ∈ C× · I. �

25.4 (Burnside’s Theorem) If |G| = pxqy

with p and q prime, then G is solvable.

Proof. Suppose the theorem is false and assume
G is a counterexample of minimal order.

Step 1: G is simple and nonabelian, and x, y > 0.

Let H be a normal subgroup of G with H ̸= {e}.
By Lagrange’s Theorem, both H and G/H have order
of the form prqs. SupposeH ̸= G. Then |H|, |G/H| <
|G| so by the choice of G, H and G/H are both solv-
able. But a composition series forH can be completed
to a composition series for G by using the correspon-
dence theorem to draw back a composition series for
G/H to G. This implies that G is solvable, a contra-
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diction. Whence, H = G and G is simple.

Since any abelian group is solvable, G is nonabelian.
Finally, assume that y = 0. Then G is a p-group. By
Sylow’s theorem, G possesses a subnormal series with
successive quotients isomorphic to Zp, implying that
G is solvable. This contradiction implies that y > 0.
Similarly, x > 0.

Step 2: G contains a conjugacy class of order qd for
some d > 0.

Let P be a Sylow p-subgroup of G, so |P | = px > 1
by Step 1. Since the center of a nontrivial finite
p-group is nontrivial, there exists e ̸= a ∈ Z(P ).
Let ā denote the conjugacy class of a so that |ā| =
[G : CG(a)], where CG(a) = {g ∈ G | ga = ag}.
Now CG(a) ⊇ P and CG(a) ̸= G (for otherwise a ∈
Z(G) so that {e} ̸= Z(G) ▹ G contradicting sim-
plicity of G if Z(G) is proper or the fact that G is
nonabelian if Z(G) = G). We have pxqy = |G| =
[G : CG(a)]|CG(a)| and since px | |CG(a)| and [G :
CG(a)] ̸= 1, the result follows.

Step 3: Let Ci be a conjugacy class of order qd (d ̸= 0)
as in Step 2. Then χj(Ci) ̸= 0 for some j > 1 such
that q - nj.
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By an orthogonality relation (11.1), we have

0 =
∑
j

χj(Ci)χj(C1) = 1 +
∑
j>1

njχj(Ci).

Therefore, if the statement is not true, we have 1 ∈
qO, whence, q−1 ∈ O ∩Q = Z, a contradiction.

Step 4: χj(Ci)/nj ∈ O.

First, putting x = si =
∑
c∈Ci

c in 24.2, we get

|Ci|χj(Ci)/nj ∈ O. Now, |Ci| = qd and q - nj , so
there exist integers r and s such that r|Ci|+ snj = 1.
Hence,

χj(Ci)/nj = r|Ci|χj(Ci)/nj + sχj(Ci) ∈ O.

Step 5: |χj(Ci)| = nj.

Set β = χj(Ci). By 25.3, |β| ≤ nj . Assume |β| <
nj . Then |α| < 1, where α = β/nj . By Step 4,
α ∈ O, so 25.1 applies. In the notation of that result,
we have for each 1 ≤ l ≤ n, αl = σl(α) = σl(β/nj) =
σl(β)/nj . Now β is a sum of nj roots of unity not all
of which are equal (since |β| < nj) so the same is true
of σl(β) since σl is a field isomorphism. Therefore,
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|αl| = |σl(β)|/nj < 1. Hence, |N(α)| = |
∏
l αl| < 1.

But 0 ̸= N(α) ∈ Z, so this is a contradiction. Thus,
|β| = nj , as desired.

Now we can complete the proof of the theorem.
Let R be a matrix representation affording χj and
set H = R−1(C× · I) ▹ G. By 25.3 and Step 5, H ̸=
{e} (in fact, H contains Ci). By simplicity of G,
H = G, implying R(G) ⊆ C× · I. But since R is
irreducible, this implies nj = 1 (see Section 5), that
is, χj is a character of degree 1 other than the trivial
character (j > 1). So G has at least two irreducible
characters of degree 1. By Exercise 6, [G : G′] ≥ 2.
Now G′ ▹ G, so this implies G′ = {e}, whence G is
abelian, contrary to Step 1. Therefore, the original
assumption that there exists a counterexample to the
theorem is false. This completes the proof. �


