Investment Criteria

Example

- Consider a firm with two projects, A and B, each with the following cash flows and a 10 percent cost of capital:

Year	Project A Cash Flows	Project B Cash Flows
	$-\$ 100$	$-\$ 150$
1	$\$ 70$	$\$ 100$
2	$\$ 70$	$\$ 100$

Net Present Value (NPV)

- What is it?
- Measure of \qquad from project
\bigcirc How do I do it?
- PV of future CFs - Initial Cost
\bigcirc The Investment Rule:
- Accept projects with \qquad NPV and accept highest NPV first

Net Present Value (NPV)

○Pros:

- Uses \qquad
\qquad
- Incorporates time value of money
\bigcirc Cons:
- Need appropriate discount rate
- Relatively more difficult to explain

Internal Rate of Return (IRR)

\bigcirc What is it?

- Discount rate that makes the NPV = \qquad
\bigcirc How do I do it?
- Set NPV = 0 and solve for discount rate
\bigcirc The Investment Rule:
- Accept if IRR is \qquad than required rate of return and accept highest IRR first

Internal Rate of Return (IRR)

\bigcirc Pros:

- Closely related to NPV, leads to same decision MOST of the time
- Relatively more easy to explain
\bigcirc Cons:
- May result in \qquad
- May result in \qquad

NPV Profiles

-What is an NPV profile?
○Nonnormal Cash Flows

Year	Cash Flow
0	$-\$ 252$
1	$\$ 1,431$
2	$-\$ 3,035$
3	$\$ 2,850$
4	$-\$ 1,000$

NPV Profiles

- What about mutually exclusive projects?

Modified Internal Rate of Return (MIRR)

\odot What is it?

- Discount rate that makes present value of outflows equal to future value of inflows
○How do I do it?
- Take present value of outflows and future value of inflows and solve for breakeven rate
○ The Investment Rule:
- Accept if the MIRR is \qquad than the required rate of return and accept highest MIRR first.

Investment Criteria

Year	Cash Flow
0	$-\$ 252$
1	$\$ 1,431$
2	$-\$ 3,035$
3	$\$ 2,850$
4	$-\$ 1,000$

Modified Internal Rate of Return (MIRR)

\bigcirc Pros:

- Assumes all cash flows are reinvested at the \qquad
- Closely related to NPV, leading to the same decision more than the IRR
- No longer possible to get \qquad
\bigcirc Cons:
- Can still lead to incorrect decisions when size/scale differences and mutually exclusive projects

Profitability Index

\bigcirc What is it?

- Benefit-cost ratio

○ How do I do it?

- Present value of future cash inflows divided by initial cost \bigcirc The Investment Rule:
- Accept if PI \qquad than 1 and accept highest PI first.

Profitability Index

\bigcirc Pros:

- Closely related to NPV, leading to same decision MOST of the time
- May be useful when available funds are limited
\bigcirc Cons:
- May result in

Payback Period

\bigcirc What is it?

- Time to recover initial investment

○How do I do it?

- Add up cash flows to determine time
\bigcirc The Investment Rule:
- Accept if payback period is \qquad than cutoff and accept shortest payback first

Payback Period

o Pros:

- Simple, no need for discount rate
- Biased toward projects with higher liquidity

○ Cons:

- Ignores \qquad
- Can accept \qquad projects
- Ignores cash flows beyond cutoff
- Can reject \qquad projects
- Arbitrary cutoff
- Biased against long-term projects (e.g., R\&D)

Discounted Payback Period

\bigcirc What is it?

- Time for present value of cash flows to recover initial investment
\bigcirc How do I do it?
- Add up present value of cash flows to determine time ○ The Investment Rule:
- Accept if discounted payback period is \qquad than cutoff and accept shortest discounted payback first

Discounted Payback Period

○ Pros:

- Incorporates the time value of money
- Does not accept \qquad projects
- Biased toward liquidity
\bigcirc Cons:
- Ignores cash flows beyond the cutoff
- Can reject projects
- Arbitrary cutoff
- Biased against long-term projects (e.g., R\&D)

Projects with Unequal Lives

- Replacement Chain or Common Life Approach
© Equivalent Annual Annuity (EAA) or Equivalent Annual Cost
- Calculate the annuity payment based on the NPV

Projects with Unequal Lives: An Example

Your firm is considering which pollution reduction system to purchase and implement to meet required EPA standards. Option linvolves an initial \$30,000 investment and subsequent annual costs of $\$ 10,000$, and must be replaced again after 3 years. Option 2 requires an initial investment of $\$ 55,000$ and has a 6 year life, requiring subsequent annual costs of $\$ 4,000, \$ 6,000, \$ 8,000, \$ 12,000$, $\$ 14,000$, and $\$ 16,000$, respectively. The appropriate discount rate for this project is 12 percent. Which option do you recommend?

Projects with Unequal Lives: An Example

NPV	EAA	0	1	2	3	4	5	6
		$\$(30,000)$	$\$(10,000)$	$\$(10,000)$	$\$(10,000)$			
		$\$(55,000)$	$\$(4,000)$	$\$(6,000)$	$\$(8,000)$	$\$(12,000)$	$\$(14,000)$	$\$(16,000)$

Chapters 5 and 6 Suggested Problems

- Concept Questions
- Chapter 5: 2, 9, and 11
- Chapter 6: 7
\odot Questions and Problems
- Chapter 5: $1,3,6,8,11,12,14,15$, and 17
- Chapter 6: 12 and 23

