Investment Criteria

Example

 Consider a firm with two projects, A and B, each with the following cash flows and a 10 percent cost of capital:

	Project A	Project B
<u>Year</u>	Cash Flows	Cash Flows
0	-\$100	-\$150
1	\$70	\$100
2	\$70	\$100

Net Present Value (NPV)

What is it?Measure of	_ from project
How do I do it?PV of future CFs – Initial Cost	
 The Investment Rule: Accept projects with highest NPV first 	NPV and accept

Net Present Value (NPV)

⊙ Pros:

- Uses _____
- Incorporates time value of money

Cons:

- Need appropriate discount rate
- Relatively more difficult to explain

Internal Rate of Return (IRR)

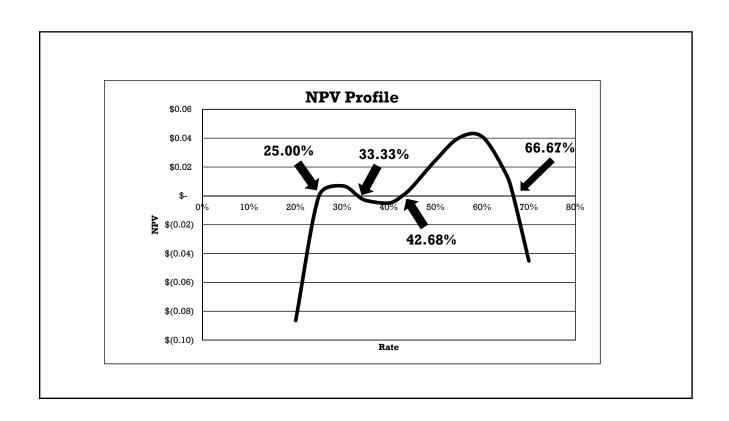
• What is it?

Discount rate that makes the NPV = _____

• How do I do it?

Set NPV = 0 and solve for discount rate

• The Investment Rule:


 Accept if IRR is _____ than required rate of return and accept highest IRR first

Internal Rate of Return (IRR)
⊚Pros:
 Closely related to NPV, leads to same decision
MOST of the time
 Relatively more easy to explain
• May result in
May result in
<u> </u>

NPV Profiles

- What is an NPV profile?
- Nonnormal Cash Flows

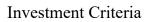
<u>Year</u>	Cash Flow
0	-\$252
1	\$1,431
2	-\$3,035
3	\$2,850
4	-\$1,000

NPV Profiles

• What about mutually exclusive projects?

Modified Internal Rate of Return (MIRR)

• What is it?


 Discount rate that makes present value of outflows equal to future value of inflows

• How do I do it?

 Take present value of outflows and future value of inflows and solve for breakeven rate

• The Investment Rule:

• Accept if the MIRR is _____ than the required rate of return and accept highest MIRR first.

<u>Year</u>	Cash Flow	
0	-\$252	
1	\$1,431	
2	-\$3,035	
3	\$2,850	
4	-\$1,000	

Modified Internal Rate of Return (MIRR)

 Assu 	mes all cas	n flows are	reinvested a	at the
--------------------------	-------------	-------------	--------------	--------

- Closely related to NPV, leading to the same decision more than the IRR
- No longer possible to get _______

Cons:

 Can still lead to incorrect decisions when size/scale differences and mutually exclusive projects

Profitability Index

• What is it?

· Benefit-cost ratio

• How do I do it?

· Present value of future cash inflows divided by initial cost

• The Investment Rule:

• Accept if PI _____ than 1 and accept highest PI first.

Profitability Index • Pros: • Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Pros: Closely related to NPV, leading to same decision
 Closely related to NPV, leading to same decision
 Closely related to NPV, leading to same decision
•
MOST of the time
 May be useful when available funds are limited
May result in

Payback Period

_	T T	77		4	•	• .	40
	\A	v h	3	•	is	- 11 1	t?
J	•	7 II	L Cal	. Ц	T 2		Li

• Time to recover initial investment

• How do I do it?

• Add up cash flows to determine time

• The Investment Rule:

•	Accept if paybac	k p	eriod is		than	cutoff	and
	accept shortest p	oayl	back firs	t			

Payback Period

• Pros:

- Simple, no need for discount rate
- Biased toward projects with higher liquidity

Cons:

•	Ignores	
•	Can accept	projects
•	Ignores cash flows	beyond cutoff

- Can reject _____ projects
- Arbitrary cutoff
- Biased against long-term projects (e.g., R&D)

Discounted Payback Period

• What is it?

Time for present value of cash flows to recover initial investment

• How do I do it?

· Add up present value of cash flows to determine time

• The Investment Rule:

 Accept if discounted payback period is _____ than cutoff and accept shortest discounted payback first

Discounted Payback Period

-051					
Incorpo	rates t	ho t	imo	 100	f

- Incorporates the time value of money
- Does not accept _____ projects
- Biased toward liquidity

Cons:

• Pros:

- · Ignores cash flows beyond the cutoff
- Can reject _____ projects
- Arbitrary cutoff
- Biased against long-term projects (e.g., R&D)

Projects with Unequal Lives

- Replacement Chain or Common Life Approach
- Equivalent Annual Annuity (EAA) or Equivalent Annual Cost
 - Calculate the annuity payment based on the NPV

Projects with Unequal Lives: An Example

Your firm is considering which pollution reduction system to purchase and implement to meet required EPA standards. Option 1 involves an initial \$30,000 investment and subsequent annual costs of \$10,000, and must be replaced again after 3 years. Option 2 requires an initial investment of \$55,000 and has a 6 year life, requiring subsequent annual costs of \$4,000, \$6,000, \$8,000, \$12,000, \$14,000, and \$16,000, respectively. The appropriate discount rate for this project is 12 percent. Which option do you recommend?

Projects with Unequal Lives: An Example

NPV	EAA	0	1	2	3	4	5	6
		\$(30,000)	\$(10,000)	\$(10,000)	\$(10,000)			
		\$(55,000)	\$ (4,000)	\$ (6,000)	\$ (8,000)	\$(12,000)	\$(14,000)	\$(16,000)

Chapters 5 and 6 Suggested Problems

Concept Questions

• Chapter 5: 2, 9, and 11

• Chapter 6: 7

Questions and Problems

• Chapter 5: 1, 3, 6, 8, 11, 12, 14, 15, and 17

• Chapter 6: 12 and 23