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Plan of the two lectures

We plan to go through the following topics:

1 Introduction;

2 Interface eigenvalue bifurcated from a Dirac point in one-dimensional
structure;

3 Bulk-interface correspondences for one-dimensional topological
materials with inversion symmetry;

4 In-gap interface eigenvalue in a waveguide bifurcated from a Dirac point;

5 In-gap interface eigenvalue in a waveguide bifurcated from a Dirac point
without band gap opening;

6 Integer Quantum Hall Effect in square lattices photonic structure;

7 Interface modes in honeycomb photonic structure.



Can we trap light?

In 1862, Maxwell concluded that light was a form of electromagnetic radiation.
In 1873, he presented a full mathematical description of the behavior of
electromagnetic fields, using Maxwell’s equations. A natural question is: can
we control light or simply trap light? While the question is of interest in
fundamental physics, there are many applications if we do can trap light:

1 Communication: optical fibers;

2 Information processing: photonic integrated circuits;

3 Green energy: more efficient solar cells.



A naive idea to trap light: reflection mirrors

But mirrors made of metals also absorb light, we want the material to be
lossless.
Solution: Bragg mirror ( a periodic multi-layer dielectric stacks), first studied
by L. Rayleigh in 1887.

Bragg mirror is a 1-D PC (photonic crystal), for trapping light in 3D, we need 3D PCs +
some new ideas.



Key ideas for trapping of light: band gaped PCs with defects

1 Anderson (1958): electrons could be trapped in a disordered material
where the atoms are arrayed randomly.

2 S. John(1987): “Strong localization of photons in certain disordered
dielectric superlattices”.

3 E. Yablonovitch(1987): If a 3D PC has an band gap which overlaps the
electronic band edge, then spontaneous emission can be rigorously
forbidden.

4 First realization of trapping of light (1997): D. Wiersma, A.Lagendijk,
using a powder of gallium arsenide.



Mathematical work on localization of light in lossless medium

The ideas and proposals of physicists were given a rigorous foundation due to the work
of A. Figotin and A. Klein who showed that trapping is possible by using PCs with band
gaps for classic waves in 3D:

1 Existence of localized “defect eigenmode” provided that the periodic medium is
perturbed by a single sufficiently large defect, 1997, 1998.

2 Existence of infinite number of localized eigenmodes with frequencies dense in an
interval contained in the spectral bandgap, provided that the periodic medium is
perturbed by a random array of defects with certain natural conditions, 1996,
1997.

Remark: defect eigenmode is the form of the waves that are trapped near the defect.



New way for localization: topological photonics

• Topological insulators refer to electronic materials that are insulating in their bulk, but
are conductive on their boundaries or interfaces. The research field develops rapidly
since the experimental discovery of integer quantum Hall effect by K. Klitzing in 1980.
Subsequently, Thouless et al (1982) and Kohmoto (1985) relates to integer in the
quantized Hall conductance to a topological invariant of the system, the Chern number.

• Electromagnetic analogues of
quantum-Hall-effect in photonic crystals:
Raghu-Haldane, ’08.

• Experimental realization in 2D
magneto-optical photonic crystal in the
microwave regime:
Wang-Chong-Joannopoulos-Soljacic, ’09.



Mathematical studies in topological materials

• Interface/edge modes can be obtained using two approaches: bifurcation of spectral degenerate points and
bulk-interface/edge correspondence.

• A class of widely studied degenerate points are Dirac points: linear degenerate points where topological phase
transition takes place.

Mathematical theory: Ablowitz-Zhu, ’12, Fefferman-Weinstein, ’12, Ammari-Hiltunen-Yu, ’20, Lin-Li-Zhang, ’2023· · · .

• The bulk-edge correspondence: The existence of interface/edge modes supported at the interface of two
structures with distinct topological invariants, and the characterization of the number of modes in terms of bulk
indices.

• Bulk-edge correspondence in discrete models: transfer matrix and Riemann surfaces (Hatsugai ’93), K-theory
(Prodan-Schulz-Baldes ’04, ’16), Elbau-Graf ’02, Elgart-Graf-Schenker ’05, Mong and Shivamoggi ’11, Graf-Port
’13, Taarabt ’14, , etc.



Mathematical studies of topological materials in continuous models

1 Integer quantum Hall system: Kellendonk, Schulz-Baldes, 2004;
Combes, Germinet, 2005, etc.

2 Domain wall models of various 1-D and 2-D Schrödinger equations and
others: Fefferman, Weinstein, Drout, Lee, Thorp, 2017-;

3 Dirac operators: G. Bal, 2019-2021; Drout, 2022-

4 Topological metamaterials made of high contrast bubbles: Ammari,
Davies, Hiltunen, Yu, et.al., 2018-;

5 · · ·



Interface eigenvalue bifurcated from a Dirac point in one-dimensional
structure

Reference: J. Lin and H. Zhang, Mathematical theory for topological photonic materials
in one dimension, Journal of Physics A, 2022.



Topologically protected states1 in 1D quantum system 2{
Hδ Ψδ = λΨδ Ψδ ∈ L2(R),

Hδ ≡−∂
2
x +Ve(x)+δ ·κ(δ · x)Wo(x).

Domain wall model:

1 The unperturbed operator Hδ=0 has a Dirac point at (E = E∗,p = π).

2 Ve ∈ C∞(R),Ve = ∑k∈2Z+
vkcos(2πkx)(vk ∈ R)

3 Wo ∈ C∞(R),Wo = ∑k∈2Z++1 wkcos(2πkx)(wk ∈ R)).
4 The perturbed Hamiltonians are different for −δW0 and +δW0.

5 κ(±∞) =±1: two different bulk media at ±∞ are connected adiabatically
by an interface layer of size 1/δ .

Using two-scale expansion method, the existence and asymptotoics of the
interface eigenvalues can be obtained.

1These states are interface modes which are confined near the interface between two media.
2C. Fefferman, J. Lee-Thorp, and M. Weinstein, Topologically protected states in

one-dimensional systems, 247, Memoirs of American Mathematical Society, 2017



Our problem setup

Consider the 1D photonic structure modeled by

L ψ =− 1
ε(x)

d
dx

(
1

µ(x)
dψ

dx

)
for x ∈ R,

where the permittivity ε(x) and the permeability µ(x) are piecewisely continuous
functions with the period 1:

ε(x) = ε(x+1), µ(x) = µ(x+1).

Assume that both ε(x) and µ(x) are positive-valued so that the photonic/phononic
system is time-reversal symmetric.



Band structure of the spectrum of L - Floquet-Bloch theory

• The spectrum of L can be obtained by solving a family of eigenvalue problems
indexed by the quasi-momentum k ∈ [−π,π]:

L ψ(x) = Eψ(x) in L2
k = {ψ ∈ L2

loc : ψ(x+1) = eik
ψ(x)}.

Each eigenvalue problem is self-adjoint and attains a discrete set of real eigenvalues

0 ≤ E1(k)≤ E2(k)≤ ·· · ≤ Ej(k)≤ ·· · .

• σ(L ) =
⋃

j≥1
[E−

j ,E
+
j ], where

E−
1 < E+

1 ≤ E−
2 < E+

2 ≤ E−
3 < E+

3 · · ·

• A Dirac point occurs when two spectral bands intersect linearly at the intersection
point.

band gap

band gap

band gap

Idea: open a band gap near a Dirac point and create a point spectrum inside



The transfer matrix and Dirac point

• For each E ∈ R, the transfer matrix

ΨE(x) = (ΨE,1(x),ΨE,2(x)) =

(
ψE,1(x) ψE,2(x)

1
µ(x)ψ ′

E,1(x)
1

µ(x)ψ ′
E,2(x)

)
,

where  (L −E)ψE,1 = 0, ψE,1(0) = 1, 1
µ(0)ψ ′

E,1(0) = 0,

(L −E)ψE,2 = 0, ψE,2(0) = 0, 1
µ(0)ψ ′

E,2(0) = 1.

• The solution of L ψ(x) = Eψ(x) can be expressed by(
ψ(x)

1
µ(x)ψ ′(x)

)
= ΨE(x)

(
ψ(0)

1
µ(0)ψ ′(0).

)

• Let M(E) = ΨE(1), D(E) = Tr M(E). Fact: det M(E) = 1.

Theorem

Dirac points can only occur at k∗ = 0 or k∗ = π with D(E∗) =±2 and D′(E∗) = 0.
Furthermore, (k∗ = 0,E∗) is a Dirac point if D′(E∗) = 0, D(E∗) = 2. (k∗ = π,E∗) is a Dirac
point if D′(E∗) = 0, D(E∗) =−2.



Perturbation of Dirac point

• Assume that the operator L attains a Dirac point (k∗,E∗) with k∗ = 0:

E∗ = E+
j = E−

j+1 = Ej(0) = Ej+1(0).

• Perturb the operator L withµ(x)→ µ(x)+δ µ̃(x),

ε(x)→ ε(x)+δ ε̃(x),

where |δ | ≪ 1, and µ̃(x) and ε̃(x) are periodic functions with
∥µ̃∥L∞ +∥ε̃∥L∞ = 1.

• The perturbed operator:

Lδ ψ(x) =− 1
ε(x)+δ ε̃(x)

(
1

µ(x)+δ µ̃(x)
ψ
′(x)
)′

.



Band gap opening at the Dirac point due to perturbation

a1 =
∂ 2D
∂E2 (E

∗), a2 =
∂ 2D

∂E∂δ
(E∗), a3 =

∂ 2D
∂δ 2 (E

∗).

Theorem

If a2
2 −a1a3 > 0, then for δ > 0 sufficiently small, there exists a band gap

between the j-th and the (j+1)-th band for the perturbed operator Lδ .
If a3 > 0, then there exists a common band gap between the j-th and the
(j+1)-th band for the operator Lδ and L−δ .

Remark: It can be proven that a1 < 0, which is independent of the
perturbation.



Existence of interface mode

• Let

Lδ ,±ψ(x) =− 1
εδ ,±(x)

d
dx

(
1

µδ ,±(x)
dψ

dx

)
,

where εδ ,±(x) = ε(x)±δ ε̃(x) and µδ ,±(x) = µ(x)±δ µ̃(x).

• Define

L̃δ =

Lδ ,−, x < 0;

Lδ ,+, x > 0.

Theorem

Assume that the operator L attains a Dirac point (k∗ = 0 or π, E∗) at the
intersection of the j-th and (j+1)-th band. Further assume that a3 > 0. There
exists an interface mode for the operator L̃δ for δ ≪ 1.

Remark. The assumptions hold if µ and ε are even functions, and µ̃ and ε̃

are odd functions.



Key ingredient in the proof: Impedance function in the band gap

For E in the band gap, all L2-solutions to the equation (L −E)ψ = 0 over the left
half-line (−∞,0] span a one-dimensional space. Let ψL,E be one of these solutions. We
define the left impedance function for the operator L in the left half-line to be

ξL(E) :=
ψL,E(0)
1

µ(0)ψ ′
L,E(0)

, if ψ
′
L,E(0) ̸= 0.

In the case where ψ ′
L,E(0) = 0, we set formally ξL(E) = ∞. In a similar way, we define

the right impedance function ξR(E) for the right half-line.

Lemma

Assume that E lies in a common spectral band gap of Lδ ,− and Lδ ,+, then there exists
an interface mode at energy level E for the operator L̃δ if and only if

ξL,−(E) = ξR,+(E).

Key steps: asymptotic expansion of the “Bloch modes” in the band gap, asymptotic
expansion of the impedance functions.



Bulk-interface correspondences for one-dimensional topological materials
with inversion symmetry

Reference I: G.C. Thiang and H. Zhang, Bulk-interface correspondences for
one-dimensional topological materials with inversion symmetry, Proceedings of Royal
Society A, 2023.
Reference II: J. Lin and H. Zhang, Mathematical theory for topological photonic
materials in one dimension, Journal of Physics A, 2022.



Problem setup

The periodic differential operator of interest is given by

L ψ =− 1
ε(x)

d
dx

(
1

µ(x)
dψ

dx

)
for x ∈ R, (1)

and the coefficients ε,µ satisfy the following two conditions:

The permittivity ε(x) and the permeability µ(x) are piecewise continuous
positive-valued functions with period one:

ε(x) = ε(x+1), µ(x) = µ(x+1).

PL = L P, where P is the parity operator defined by

Pψ(x) = ψ(−x).

Under the above assumptions, ε(x) = ε(−x), µ(x) = µ(−x), or equivalently,
ε(x) = ε(1− x), µ(x) = µ(1− x). Also, L is time-reversal symmetric in the sense that
it commutes with the operation of complex conjugation.
Such systems were investigated by M. Xiao, Z.Q. Zhang, C.T. Chan, Surface
impedance and bulk band geometric phases in one-dimensional systems, Phys. Rev.
X, 2014.



Change of parity for the Bloch modes at band gap edges.

We say that a Bloch mode ϕj,k has even-parity (odd-parity) if ϕj,k is an even (odd)
function.

Lemma

The Bloch modes ϕj,k are even or odd when k = 0 or π at an isolated band.

Proposition

Let L be a periodic operator of the form (1). Assume that there is a band gap between
the j-th and (j+1)-th bands. Then the Bloch modes at (k∗,E+

j ) and at (k∗,E−
j+1) have

different parities, where k∗ = 0 or π.

band gap

band gap

band gap



Bulk topological index for inversion symmetric system

Assume that there is a gap between the j-th and (j+1)-th spectral bands of
L . Recall that the lower edge of the band gap, i.e. the maximum of the j-th
band, E+

j , is achieved at either k = 0 or π. With respect to this band gap, we
define the following bulk index:

γj =: the parity of the Bloch mode at E+
j .

We can show that
γj = (−1)j−1ei∑

j
m=1 θm ,

where θm is the Zak phase for the m-th isolated band.



Review on the Zak phase

• The normalized Bloch mode ϕj,k (the eigenfunction corresponding to the eigenvalue
Ej(k)) can be written as ϕj,k(x) = eikxuj,k(x), where uj,k(x) is a periodic function
satisfying uj,k(x) = uj,k(x+1).

• The discrete Zak phase over the j-th band:

θ
(N)
j =

N−1

∑
n=1

−Im ln
(
uj,kn+1 ,uj,kn

)
X − Im ln

(
e−i2πxuj,k0 ,uj,kN−1

)
X

mod 2π,

where kn =−π + 2πn
N . The last term comes from the observation that

uj,π (x) = e−i2πxuj,−π (x).

• The continuous Zak phase over the j-th band (assuming that ϕj,−π = ϕj,π ):

θj = i
∫

π

−π

(
∂uj,k

∂k
,uj,k

)
X

dk mod 2π.



Bulk-interface correspondence for the inversion symmetric systems

• Let

Ljψ =− 1
εj(x)

d
dx

(
1

µj(x)
dψ

dx

)
, j = 1,2,

where εj(x) = εj(1− x), µj(x) = µj(1− x).

• The differential operator for the joint structure is given by

A ψ(x) =

{
L1ψ(x), x < 0,

L2ψ(x), x > 0.

Theorem

Assume that the following holds:

(i) The operators L1 and L2 attain a common band gap

I := (E(1),+
m1 ,E(1),−

m1+1)∩ (E(2),+
m2 ,E2,−

m2+1) ̸= /0

for certain positive integers m1 and m2.

(ii) The bulk topological indices γ
(1)
m1 ̸= γ

(2)
m2 for L1 and L2,

Then there exists a unique interface mode ψ ∈ L2(R) for the operator A .



Key observation of the impedance functions in the band gap

Lemma

Assume that there is a band gap between the j-th and the (j+1)-th bands. Then the
following hold for E ∈ (E+

j ,E
−
j+1):

1 If the Bloch mode at the band edge (k,E+
j ) has odd-parity for k = 0 or π, then

ξR(E) is strictly decreasing, with ξR(E)→ 0 as E → E+
j and ξR(E)→−∞ as

E → E−
j+1; On the other hand, ξL(E) is strictly increasing, with ξL(E)→ 0 as

E → E+
j and ξL(E)→+∞ as E → E−

j+1.

2 Similar conclusions if the Bloch mode at (k,E+
j ) has even-parity.



A consequence on the dislocation model

Proposition

Let

L1 =− 1
ε1(x)

d
dx

(
1

µ1(x)
d
dx

)
.

Assume that the spectrum of L1 has a band gap between the j-th and (j+1)
band. Further assume that the maximum of the j-th spectral band and the
minimum of the (j+1)-th spectral band are achieved at k = π. Let L2 be the
1/2 shifted version of L1, in the sense that the corresponding coefficients ε2

and µ2 are related to those of L1 by

ε2(x) = ε1(x−1/2); µ2(x) = µ1(x−1/2).

Then there exists a unique interface mode in the band gap between the j-th
and (j+1) band for the glued operator L̃ .

Remark: a shift of origin by 1/2 will change Zak phase by π.



Extension to other one-dimensional systems

Remark

All the results can be extended to electronic systems modeled by
Schrödinger operators as below:

Lj =− d2

dx2 +Vj, j = 1,2,

where Vj are real-valued piecewise continuous functions in one dimension
that are periodic and are even.



Stability of interface modes
• For a photonic system with an interface mode in a common spectral band gap of two
operators L1 and L2, we perturb it with a defect region (d1,d2), and the relative
permittivity and permeability are

ε(x) =


ε1(x−d1), x < d1,

εd(x), d1 < x < d2,

ε2(x−d2), x > d2.

and µ(x) =


µ1(x−d1), x < d1,

µd(x), d1 < x < d2,

µ2(x−d2), x > d2.

Theorem

Assume that L1 and L2 attain a common band gap I := (E(1),+
m1 ,E(1),−

m1 ) = (E(2),+
m2 ,E2,−

m2+1)

and the bulk topological indices γ
(1)
m1 and γ

(2)
m2 are different for the two operators. If

max
{
∥µ∥L∞(d1 ,d2)

,E∥ε∥L∞(d1,d2)

}
· (d2 −d1)<

π

2
holds for any E ∈ I, then the perturbed operator attains an interface mode.

Theorem

Assume that L1 and L2 attain a common band gap and the bulk topological indices
are different for the two operators. If εd(x)≡ ε0 and µd(x)≡ µ0 for certain constants ε0

and µ0, then the perturbed operator attains a localized state for any ε0 ≥ 1, µ0 ≥ 1, and
d := d2 −d1 ≥ 0.



A quick summary so far

Present a mathematical theory for in-gap interface eigenvalue in 1D
topological photonic/phononic structure:

1 Characterization of Dirac points;

2 Existence of in-gap interface eigenvalue bifurcated from a Dirac point;

3 Bulk-interface correspondence for systems with inversion symmetry;

4 Stability of interface modes.



In-gap interface eigenvalue in a waveguide bifurcated from a Dirac point

Reference: J. Y. Qiu, J. Lin, P. Xie and H. Zhang, Mathematical theory for the interface
mode in a waveguide bifurcated from a Dirac point, preprint.

Related work:
H. Ammari, B. Davies, EO. Hiltunen, S.Yu, Topologically protected edge modes in
one-dimensional chains of subwavelength resonators, 2020.

H. Ammari, B. Davies, EO. Hiltunen, Robust edge modes in dislocated systems of
subwavelength resonators, 2022.



Problem setup: the unperturbed waveguide

We aim to create an in-gap interface eigenvalue in a waveguide by perturbing the
following periodic structure with periodic one that has Dirac point.

Remark: There are two identical particles in a unit cell; Wave propagation can be
modelled by 

(∆x +λ )u(x;λ ) = 0, x ∈ Ω,

u(x;λ ) = 0, x ∈
⋃

n∈Z
∂Dn,

∂

∂x2
u(x;λ ) = 0, x ∈ Γ1

⋃
Γ2.



Assumptions on the unperturbed structure

1 There is a Dirac point at λ = λ∗ ,p = p∗ = π which is at the intersection of the lowest two dispersion curves
(due to the shift by 1/2 sub-lattice symmetry).

2 λ∗ is not an embedded eigenvalue.

3 λ∗ ̸= (2m+1)π (m ∈ Z).

4 Reflection symmetry. PΩ = Ω where P: P(x1 ,x2) = (−x1 ,x2).

5 There exists analytic functions (in p) (µn(p),vn(·;p)), n = 1,2 such that

µ1(p) =

{
λ1(p), p ∈ [0,π),

λ2(p), p ∈ [π,2π],
v1(·,p) =

{
u1(·;p), p ∈ [0,π),

u2(·;p), p ∈ [π,2π],

and

µ2(p) =

{
λ2(p), p ∈ [0,π),

λ1(p), p ∈ [π,2π],
v2(·,p) =

{
u2(·;p), p ∈ [0,π),

u1(·;p), p ∈ [π,2π],

Moreover, µ ′
1(p∗) =−µ ′

2(p∗) = α∗ ̸= 0.



The perturbed structures
(∆x +λ )u(x;λ ) = 0,x ∈ Ωδ ,

u(x;λ ) = 0,x ∈ ∂Dn,δ ,

∂

∂x2
u(x;λ ) = 0,x ∈ Γ1

⋃
Γ2.

⇒

{
Lδ : H2

b(Ωδ )⊂ L2(Ωδ )→ L2(Ωδ ),

u 7→ −∆u.

The glued operator:

L̃δ ψ(x) :=

{
Lδ ψ(x), x1 > 0,

L−δ ψ(x), x1 < 0.

Figure: Waveguide with perturbation:(a) L−δ , (b) L−δ , (c) L̃δ .



Asymptotic expansion and band gap opening

Proposition

Assume that t∗ ̸= 0 (t∗ is a constant determined by the perturbation). Then the first two
branches of dispersion relation admit the following expansion

λ2,δ (p) = λ∗+
1
γ∗

√
δ 2t2∗ +θ 2

∗ (p−p∗)2 +O(p−p∗)2 +O(δ 2),

λ1,δ (p) = λ∗−
1
γ∗

√
δ 2t2∗ +θ 2

∗ (p−p∗)2 +O(p−p∗)2 +O(δ 2).

Thus Iδ := [λ1,δ (0),λ2,δ (0)] is a band gap. The asymptotics of u1,δ (p) and u2,δ (p) can be
derived correspondingly.



Main result on the existence of interface eigenvalue

Theorem

Assume that t∗ ̸= 0. Then for δ sufficiently small, there exists a unique point
spectrum of L̃δ : H2

b(Ω̃δ )⊂ L2(Ω̃δ )→ L2(Ω̃δ ) in the interval

Iδ ≡ (λ∗− cδ |β∗|,λ∗+ cδ |β∗|) ,

where 0 < c < 1 is a constant and β∗ =
t∗
γ∗

.

Figure: Interface state in the perturbed structure.



Proof of the existence of interface eigenvalue: representation of interface
mode

If u(x;λ ) is an interface mode, then

u(x;λ ) =

{
uR(x), x1 > 0,

uL(x), x1 < 0,
with


u(0,x2,λ ) = uL(0−,x2;λ ) = uR(0+,x2;λ ),

∂u
∂x1

(0,x2;λ ) =
∂uL

∂x1
(0−,x2;λ ) =

∂uR

∂x1
(0+,x2;λ ).

We can prove the following boundary integral representation:

uR(x;λ ) = 2
∫

Γ

Gδ (x,y;λ )φ(y)dσ(y),

uL(x;λ ) =−2
∫

Γ

G−δ (−x,y;λ )φ(y)dσ(y),

where φ = ∂u
∂x1

(0,x2;λ ) ∈ H− 1
2 (Γ) and Gδ is the Green function in the

perturbed waveguide:


(∆x +λ )Gδ (x,y;λ ) = δ (x− y), x,y ∈ Ωδ ,

Gδ (x,y;λ ) = 0, x ∈
⋃

n∈Z
∂Dn,δ ,

∂

∂x2
Gδ (x,y;λ ) = 0, x ∈ Γ1

⋃
Γ2 ,

Gδ (·,y;λ ) satisfies the radiation condition.



Proof of the existence of interface eigenvalue: matching of boundary
conditions

The condition uL(0−,x2;λ ) = uR(0+,x2;λ ) leads to the following boundary
integral equation:

G̃δ (λ )φ :=
(
Gδ (λ )+G−δ (λ )

)
φ = 0,

where
Gδ (λ ) : H− 1

2 (Γ)→ H
1
2 (Γ), ϕ(y) 7→

∫
Γ

Gδ (x,y;λ )ϕ(y)dσ(y),

G−δ (λ ) : H− 1
2 (Γ)→ H

1
2 (Γ), ϕ(y) 7→

∫
Γ

G−δ (x,y;λ )ϕ(y)dσ(y).

One can show that the interface eigenvalue problem is equivalent to the
following characteristic value problem

G̃δ (λ )φ = 0, φ ∈ H− 1
2 (Γ).



Spectral expansion of the Green function

We denote {(λj,δ (p),uj,δ (x;p))}j≥1 the Bloch eigenpairs of the perturbed
periodic structure Ωδ for each p ∈ B = [0,2π]. Then G±δ attains the following
spectral representation for λ in band gaps:

G±δ (x,y;λ ) =
1

2π

∫ 2π

0

+∞

∑
n=1

un,±δ (x;p)un,±δ (y;p)
λ −λn,±δ (p)

dp.

The expansion for the layer potentials G±δ (λ ) follows accordingly.



Key step: limiting behaviour of the operator G̃δ

Proposition

Let Iδ be the band gap and Ĩ := {h ∈ R : λ∗+δ ·h ∈ Iδ }. Then the following convergence holds
uniformly for h ∈ Ĩ:

lim
δ→0

∥∥∥∥∥G̃δ (λ∗+δ ·h)−
(

2T0 +β (h)P
)∥∥∥∥∥

B(H− 1
2 (Γ),H

1
2 (Γ))

= 0.

where

T0 =
1

2π
∑

n≥3

∫ 2π

0

⟨·,un(x;p)⟩
λ∗−λn(p)

un(x;p)dp

+
1

2π
∑

n=1,2
p.v.

∫
[0,2π]

⟨·,un(x;p)⟩
λ∗−λn(p)

un(x;p)dp,

β (h) =− 1
β∗α∗

h√
1− ( h

β∗ )
2
, P= ⟨·,u1(x;π)⟩u1(x;π)+ ⟨·,u2(x;p)⟩u2(x;π).

Moreover, T0 is a Fredholm operator with index 0 and with a Kernel of dimension 1.

Remark: T0 is associated with evanescent waves while P propagating waves.



Proof of the existence of interface eigenvalue

The following two characteristic value problem have the same number of
solutions:

G̃δ (λ∗+δ ·h)φ = 0 VS
(

2T0 +β (h)P
)

φ = 0.

Proposition

The operator 2T0 +β (h)P has a unique simple characteristic value h = 0 and
invertible for h ̸= 0.

Thus, the original characteristic problem has a unique solution λ ⋆ = λ∗+δ ·h⋆

for some h∗ ∈ Ĩ. Let φ⋆ ∈ H− 1
2 (Γ) be the associated root function, then the

interface mode is given by

u⋆ =


∫

Γ

Gδ ((x1,x2),y;λ )φ ⋆(y)dσ(y), x1 ≥ 0,

−
∫

Γ

G−δ ((−x1,x2),y;λ )φ ⋆(y)dσ(y), x1 < 0.



Interface modes in a waveguide without band gap opening

Reference: Jiayu Qiu and H. Zhang, On the bifurcation of a Dirac point in a photonic
waveguide without band gap opening, preprint.



Setup of the model
We start with the following unperturbed periodic waveguide Ω with holes and which is filled with
material with refractive index nε=0(x).

· · ·

· · ·

· · ·

· · ·

Γ

The wave propagation can be modelled by the following equations
(Lε=0 −λ )u = 0 in Ω,

∂u
∂n

= 0 on ∂Ω.

where Lε=0 =− 1
n2
ε=0(x)

∆. Assume Lε=0 has the band structure as below, i.e. a Dirac point at p = 0

which is at the lower end of the second band, but inside the first band

p
0−π π

λ2,0(p)

λ1,0(p)

λ = λ∗

−q∗ q∗

For simplicity, we assume reflection symmetry: [P,Lε=0] = 0,P[f ](x1,x2) := f (−x1,x2).



Perturbation and band structure

.

We consider the perturbed refractive index nε (x) and assume that(
∂Lε

∂ε

∣∣
ε=0vn(·;p = 0),vm(·;p = 0)

)
n,m=1,2

=

(
0 t∗
t∗ 0

)
, t∗ ̸= 0.

v1(x;p),v2(x;p): first two branches of the analytic Bloch eigenfunctions. Assume reflection
symmetry: [P,Lε ] = 0. Then Lε (0 < |ε| ≪ 1) has the band structure as in Figure (b).

p
0−π π

λ2,0(p)

λ1,0(p)

λ = λ∗

−q∗ q∗

(a) Unperturbed band

p
0−π π

λ2,ε (p)

λ1,ε (p)

λ = λ∗

(b) Perturbed band

Remark: The band gap is not opened by the small perturbation. The second band is lifted up from
the Dirac point.



Interface modes and resonant modes

We consider the joint structure that is modelled by the operator

(L ⋆
ε u)(x1 ,x2) :=

{
(Lε u)(x1 ,x2), x1 > 0,

(L−ε u)(x1,x2), x1 < 0.

Let Iε = {λ ∈ C : |λ −λ∗|< |t∗|ε}. The main result is:

Theorem

For 0 < |ε| ≪ 1, L ⋆
ε has a generalized eigenvalue λ ⋆ ∈ Iε ∩{Im(λ )≤ 0} with the eigenfunction

u⋆ ∈ L2
loc(Ω). Moreover,

1. ∥u⋆∥< ∞ if and only if Im(λ⋆) = 0;

2. ∥u⋆∥L2(Ω)
= ∞ if and only if u⋆ |Γ can be coupled to either the right going Bloch mode of Lε at λ⋆ or the left

going Bloch mode of L−ε at λ⋆.



Sketch of the proof

Due to the failure of band gap opening, the Green function (associated with Lε , ε ̸= 0) is defined via the limiting
absorption principle:

Gε (x,y;λ ) :=
∫

π

−π
∑

n>1

un,ε (x;p)un,ε (y;p)
λ −λn,ε (p)

dp+ lim
η→0+

∫
π

−π

u1,ε (x;p)u1,ε (y;p)
λ + iη −λ1,ε (p)

dp.

Warning: Gε is not analytic in λ due to the branch cut.
We construct an analytic continuation of Gε :

G̃ε (x,y;λ ) :=
∫

π

−π
∑

n>1

un,ε (x;p)un,ε (y;p)
λ −λn,ε (p)

dp+
∫

Cε

u1,ε (x;p)u1,ε (y;p)
λ + iη −λ1,ε (p)

dp.

Here Cε is the integral contour:

Re(p)

Im(p)

−π π−q∗

q∗

Theorem

G̃ε = Gε for λ real.



Sketch of the proof

Define
G̃±ε (λ ) : ϕ(y) 7→

∫
Γ

G̃±ε (x,y;λ )ϕ(y;λ )dσ(y).

Theorem

For λ ∈ Iε and ϕ ∈ H̃− 1
2 (Γ), we define u(x;λ ) = (G̃ε (λ )ϕ)(x) (x ∈ Ω). Then

(Lε −λ )u(x) = 0, x ∈ Ω,

and
u(x;λ ) = u(Px;λ ),(

∂u
∂x1

)∣∣∣
Γ
=

ϕ

2
.



Sketch of the proof

We construct a solution to (L ⋆
ε −λ )u = 0 with the form

u(x) =


∫

Γ

G̃ε (x,y;λ )ϕ(y;λ )dσ(y), x1 > 0,

−
∫

Γ

G̃−ε (x,y;λ )ϕ(y;λ )dσ(y), x1 < 0,
(2)

This construction requires (
G̃ε (λ )+ G̃−ε (λ )

)
ϕ = 0, (3)

where
G̃±ε (λ ) : ϕ(y) 7→

∫
Γ

G̃±ε (x,y;λ )ϕ(y;λ )dσ(y).

We solve (3) to obtain characteristic values which satisfy Im(λ )≤ 0. Then (2) gives an interface mode (or resonant
mode) if and only if Im(λ ) = 0 (or Im(λ )< 0).



Integer Quantum Hall Effect in Square Lattice Photonic structure

Reference: Jiayu Qiu and H. Zhang, A Mathematical Theory of Integer Quantum Hall
Effect in Photonics, preprint.



The model setup

We consider the structure is proposed in the first experimental realization of QHE in photonics by
Wang et.al. 09: 2D square lattice of magneto-optical particles.

Without applied magnetic field, time-harmonic TE polarized EM wave propagation can be modeled
by the following operator

L A =−div(A∇)

where A(x) =
(

1+ c ·∑n1 ,n2∈Z χDn1 ,n2
(x)
)
· I2×2.

(c) Unperturbed structure
(dielectric rods embedded in
the air)

(d) Perturbed structure (dif-
ferent magnetic fields at two
sides)



Absence of Dirac cones

Assume that L A is invariant under C4v−point group. The representation theory of C4v group
indicates the existence of degenerate points in the band structure of σ(L A).

Theorem

Liner degenerate points (i.e. Dirac points) can’t appear at κκκ = (0,0),(0,π) or (π,π).

We assume

(1) A quadratic degenerate point at M-point. More precisely, the first two bands of L A touch
quadratically at (κκκ∗ = (π,π),λ∗), where the Bloch modes u1,u2 satisfy the following relations
(R : π

4 −rotation, F : x1−reflection)

Ru1 = iu2, Ru2 = iu1, Fu1 = u1, Fu2 =−u2.

(2) Spectral no-fold condition at λ = λ∗. More precisely, λ∗ is at the upper end of the first band
and lower end of the second band.

κ1

λ



Band gap opening and phase transition

We consider the perturbed operator L A±δ ·B where B(x) = b(x) ·σ2 with b(x) = ∑n1 ,n2∈Z χDn1 ,n2
(x)

and σ2 =

(
0 −i
i 0

)
. This models the propagation of TE waves in the lattice structure under an

applied uniform magnetic field (to the gyromagnetic particles).

Remark: L B breaks the F−symmetry (as well as the time-reversal symmetry), which opens a
band gap near (κκκ∗,λ∗).



Perturbation and Band gap opening

We obtain by dedicated 2nd order perturbation arguments:

Theorem

For |δ |, |κ1 −π| ≪ 1, and κκκ = κκκ∗+(κ1 −π)e1, the first two branches of Bloch eigenpairs of L A±δ ·B satisfy

λ1,δ (κκκ) = λ1,−δ (κκκ)∼ λ∗−
√

δ 2t2∗ +
1
4

γ2∗ |κ1 −π|4,

λ2,δ (κκκ) = λ2,−δ (κκκ)∼ λ∗+

√
δ 2t2∗ +

1
4

γ2∗ |κ1 −π|4.

where γ∗ , t∗ ∈ R. Moreover,

v1,δ (x;κκκ)∼ v1(x;κκκ∗)+ t∗f (κ1 −π;δ ) · v2(x;κκκ∗)+(κ1 −π)(∂κ1)v1(x;κκκ∗)+ r1(x),

v2,δ (x;κκκ)∼−t∗f (κ1 −π;δ ) · v1(x;κκκ∗)+ v2(x;κκκ∗)+(κ1 −π)(∂κ1)v2(x;κκκ∗)+ r2(x),

where f (p;δ ) = δ

1
2 γ∗p2+

√
1
4 γ2∗ p4+t2∗δ2

, r1 ,r2 = o(1).



Interface modes for κ∥ = π

We consider the joint structure that is modelled by the following operator

L inter =

{
L A+δ ·B, x1 > 0,

L A−δ ·B, x1 < 0.

Theorem

Along the e2 interface, for κ∥ = π, there exists exactly two eigenvalues λ ⋆
n (n = 1,2) of L inter in the

band gap, whose eigenfunctions decays exponentially away from the interface.

Remark: One can prove there exist exactly two eigenvalues λ ⋆
n (κ2) (n = 1,2) of L inter

∣∣∣
L2

κ2
(Ω)

inside

the band gap for |κ2 −π| ≪ 1 by a standard perturbation argument. One can also calculate the
slope (λ ⋆

n )
′(π) of the two dispersion curves for the interface modes.



Sketch of proof

We can show that the in-gap eigenvalues are equivalent to the characteristic values of the following the integral
operator (

Tδ (λ )+T−δ (λ )
)(

φ

ϕ

)
= 0, (4)

where the entries of Tδ are layer potential operators associated with the Green function Gδ

Tδ ∈ B(H
1
2 (Γ)× H̃− 1

2 (Γ)), Tδ

(
φ

ϕ

)
:=

(
−K (λ ;Gδ ) S (λ ;Gδ )

−N (λ ;Gδ ) K ∗(λ ;Gδ )

)(
φ

ϕ

)
.

Technicality: Tδ blows up at different rates on different subspaces as δ → 0. We thus consider the following
normalized equations:

(
Mδ (λ )+M−δ (λ )

) Ψ

Φ(1)

Φ(1)

= 0, Mδ (λ ) :=


QTδ (λ )Q δ

1
4 QTδ (λ )Π1 δ

− 1
12 QTδ (λ )Π2

δ

1
4 Π2T

δ (λ )Q δ

1
2 Π2T

δ (λ )Π1 δ

1
6 Π2T

δ (λ )Π2

δ
− 1

12 Π1T
δ (λ )Q δ

1
6 Π1T

δ (λ )Π1 δ
− 1

6 Π1T
δ (λ )Π2

 .

Here Π1: projection to (∂κ1vn)(x;κκκ∗), Π2: projection to vn(x;κκκ∗) (n = 1,2).

Theorem

(4) has two characteristic values, which gives two in-gap interface eigenvalues.



Interface modes in honeycomb structure

Reference: Jiayu Qiu, Junshan Lin, Wei Li and H. Zhang, Mathematical Theory for
Interface Modes in Honeycomb Topological Wave Insulator with Broken Reflection
Symmetry, preprint.



Interface modes in honeycomb structure

Idea: We start with a honeycomb structure with a Dirac point. This can be
achieved by assuming lattice symmetry + 2π

3 rotation symmetry+ reflection
symmetry w.r.t x-axis.

We then perturb the structure differently on the two sides of an interface to
create an interface mode.



Existence of Dirac points in honeycomb structure

Let Cz = {l1e1 + l2e2 : l1, l2 ∈ (−1/2,1/2)} be the fundamental cell, D(η) be an
impenetrable inclusion with size η located at the center of Cz. Assume D(η)

is invariant under the 2π

3 -rotation and the horizontal reflection.

Theorem

For η ≪ 1, there exists a Dirac point at (K,λ∗) in the band structure of the
honeycomb lattice. The dispersion surface near (K,λ∗) takes the form

(λ −λ∗)
2 = m2

∗ |p−K|2 +O(|p−K|3), m∗ ∈ R, m∗ ≥ 0,

where m∗ =
2
3 (1+O(η)).



Opening of band gap at Dirac points

Theorem

Assume t∗ > 0. The following dispersion relations hold for p near K and λ near λ∗:

λ1,±ε (p) = λ∗−
1
|γ∗|

√
ε2t2∗ +m2

∗|γ∗|2|p−K|2
(
1+O(ε, |p−K|)

)
,

λ2,±ε (p) = λ∗+
1
|γ∗|

√
ε2t2∗ +m2

∗|γ∗|2|p−K|2
(
1+O(ε, |p−K|)

)
.

Remark: m∗, γ∗ are constants which depend on the unperturbed structure. t∗ depends
on the perturbation.



Interface modes along a zigzag interface

Theorem

Assume that t∗ ̸= 0, and η be an arbitrary constant in (0,1). For sufficiently
small positive ε, there exist a unique interface mode with k∗,a∥ = 2π, with the
corresponding eigenvalues λ± ∈ (λ∗−η

t∗
γ∗

ε,λ∗+η
t∗
γ∗

ε). In addition, both
edge modes decay exponentially as |x · e1| → ∞.



Interface modes along an armchair interface

Theorem

Assume that t∗ ̸= 0, and η ∈ (0,1). For sufficiently small positive ε, there exist
exactly two edge modes with k∗,a∥ = 2π, with the corresponding eigenvalues
λ± ∈ (λ∗−η

t∗
γ∗

ε,λ∗+η
t∗
γ∗

ε). In addition, both edge modes decay
exponentially as |x · ea

1| → ∞.



Summary

1 Existence of in-gap interface eigenvalues bifurcated from Dirac points for various
models in photonics/phononics;

2 Existence of in-gap interface eigenvalues bifurcated from quadratic degenerate
points in 2D square lattice of photonic structures;

3 Compared to the results in the domain-wall models, the new approach can
overcome the difficulties of discontinues coefficients and sharp interfaces.

4 New ideas are need to establish bulk-interface correspondence type results in the
non-perturbative regime!

Thank you for your attention!


