Events

Linear Algebra Seminar

Time: Oct 15, 2013 (04:00 PM)
Location: Parker Hall 224 NEW ROOM

Details:

Speaker:  Daniel Brice

Title: Zero Product Determined Algebras I - Direct Sums and Tensor Products

Abstract:  Let $K$ be a commutative ring with identity.  A $K$-algebra $A$ is said to be zero product determined if for every $K$-bilinear $\phi: A\times A\to B$ having the property that $\phi(a_1,a_2) = 0$ whenever $a_1a_2=0$ there is a $K$-linear $\mu : A^2 \to Im \phi$ such that $\phi(a_1, a_2) = \mu(a_1 a_2)$ for all $a_1, a_2 \in A$.

We provide a necessary and sufficient condition  for an algebra $A$ to be zero product determined and use the condition to show that the direct sum of arbitrarily many algebras is zero product determined if and only if each component algebra is zero product determined and that the tensor product of two zero product determined algebras is zero product determined in case $K$ is a field or in case the algebra multiplications are surjective.