Department of Chemistry and Biochemistry
Associate Professor
Research Areas: Physical
Office: 264 Chemistry Building
Address:
179 Chemistry Building
Auburn, AL 36849
Phone: (334) 844-6963
Fax: (334) 844-6959
Email: blumeri@auburn.edu
Physical Chemistry: Chemical interactions of plasmas with solid surfaces.
Research in the Blumenthal Group is focused on the chemical interactions of plasmas with solid surfaces. Over the years, our interests have ranged from problems of concern to the semiconductor industry (the etching of silicon and magnetic metals), thin film deposition (the deposition of diamond thin films), and the military (the ignition of propellants).
Method Development (Supersonic Pulse, Plasma Sampling Mass Spectrometry): Our first efforts were dedicated to the development of a new mass spectrometric method, Supersonic Pulse, Plasma Sampling Mass Spectrometry. In this technique, we release a short pulse of argon into the low-pressure plasma environment. The gas pulse expands and cools as it traverses the plasma region, ultimately resulting in supercooling of the gas. Species originally in the plasma become the nucleation centers for the formation of argon clusters, which are then transported to the mass spectrometer. This technique allows us to obtain a nearly intact mass spectrum of the chemical composition of the plasma.
Thin Film Deposition (Applications include tools and multi-blade razors): The first problem that we tackled with this new technique was the mechanism of diamond deposition in high-density plasmas. We were able to show that the primary chemistry of the feed gases is the stripping of hydrogen from the carbon backbone. Based on our observations, we were also able to make a convincing argument that the “growth species” of diamond is •C2H3, not •CH3 as is commonly believed.
Semiconductor Processing (Transistor and non-volatile RAM Fabrication): In the semiconductor etching field, we were the first group to measure the fraction of chlorine that is dissociated in these plasmas. We have determined the mechanism responsible for the 250% etch rate enhancement in the etch rates of magnetic metals, observed when CO is added to NH3 plasmas. That mechanism is the first one reported that includes a species responsible for the etching that is synthesized in the plasma environment. We are currently exploring a number of other gas chemistries to determine both their etch rates and their mechanisms.
Military Effectiveness (Ignition of Propellants for Artillery Applications): We are investigating the mechanism of the plasma ignition of propellants. Plasma ignition has been demonstrated to have several advantages over conventional ignition, including a reduced and highly reproducible ignition delay, important in targeting moving objects. By investigating the interactions of a propellant with the individual components and combinations of the components of an igniter pulse, we have developed a mechanism for the plasma ignition process that also explains the reproducible ignition delay. We are actively working on a number of other issues related to propellant ignition.
- R. Blumenthal, K. Benavides, and D. DePonte, "Plasma Ignition of RDX: A ReaxFF Molecular Dynamics Simulation", Proceedings of the 46th JANNAF Combustion Subcommittee Meeing, CPIAC, December 2014
- W. Casper IV, H. denHartog, and R. Blumenthal, "A Novel Method for the Laser Induced Ignition of RDX", Proceedings of the 46th JANNAF Combustion Subcommittee Meeting, CPIAC, December 2014
- H. Sun and R. Blumenthal, "Products of the Ultraviolet Laser Ablation of RDX", Proceedings of the 43rd JANNAF Combustion Subcommittee Meeting, CPIAC JSC CD-60, December 2009-0105 CS.
- T.A. Bormotova and R. Blumenthal, "Ultraviolet (UV) Laser Ablation of Polycarbonate and Glass in Air", Journal of Applied Physics, 105(3) (2009) 034910/1-034910/7
- Rodney Calliere and Rik Blumenthal , "Strong Synergistic Effects in the Combustion of Propellants in H2 Plasmas", Journal of Applied Physics, 100(8) (2006) 084904/1-089404/7
Last updated: 02/14/2017